索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]任安民,戴秋艳.血管平滑肌细胞对动脉粥样硬化形成的作用研究[J].国际心血管病杂志,2017,05:260-263.
点击复制

血管平滑肌细胞对动脉粥样硬化形成的作用研究(PDF)

《国际心血管病杂志》[ISSN:1006-6977/CN:61-1281/TN]

期数:
2017年05期
页码:
260-263
栏目:
综述
出版日期:
2017-10-20

文章信息/Info

Title:
-
作者:
任安民戴秋艳
200080 上海交通大学附属第一人民医院心内科
Author(s):
-
关键词:
合成型平滑肌细胞 收缩型平滑肌细胞 动脉粥样硬化
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-6583.2017.05.002
文献标识码:
-
摘要:
动脉粥样硬化的形成是复杂且缓慢的过程。血管平滑肌细胞可分为合成型和收缩型,参与动脉粥样硬化的发生和发展。该文介绍血管平滑肌细胞外泌体、表型转化、离子通道、自噬以及细胞外高血糖状态对动脉粥样硬化形成的影响。
Abstract:
-

参考文献/References

[1] Hansson GK. Inflammation, atherosclerosis, and coronary artery disease[J]. N Engl J Med, 2005, 352(16):1685-1695.
[2] Jiang H, Lun Y, Wu X, et al. Association between the hypomethylation of osteopontin and integrin beta3 promoters and vascular smooth muscle cell phenotype switching in great saphenous varicose veins[J]. Int J Mol Sci, 2014, 15(10):18747-18761.
[3] Perrotta I, Aquila S. Exosomes in human atherosclerosis: an ultrastructural analysis study[J].Ultrastruct Pathol, 2016, 40(2):101-106.
[4] Li L, Wang Z, Hu X, et al. Human aortic smooth muscle cell-derived exosomal miR-221/222 inhibits autophagy via a PTEN/Akt signaling pathway in human umbilical vein endothelial cells[J]. Biochem Biophys Res Commun, 2016, 479(2):343-350.
[5] Hergenreider E, Heydt S, Tréguer K, et al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs[J].Nat Cell Biol, 2012, 14(3):249-256.
[6] Albarrán-Juárez J, Kaur H, Grimm M, et al. Lineage tracing of cells involved in atherosclerosis[J]. Atherosclerosis, 2016, 251:445-453.
[7] Shankman LS, Gomez D, Cherepanova OA, et al. KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis[J].Nat Med, 2015, 21(6):628-637.
[8] Qiao Y, Tang C, Wang Q, et al. Kir2.1 regulates rat smooth muscle cell proliferation, migration, and post-injury carotid neointimal formation[J]. Biochem Biophys Res Commun, 2016, 477(4):774-780.
[9] Wamhoff BR, Bowles DK, McDonald OG, et al. L-type voltage-gated Ca2+ channels modulate expression of smooth muscle differentiation marker genes via a rho kinase/myocardin/SRF-dependent mechanism[J].Circ Res, 2004, 95(4):406-414.
[10] Kudryavtseva O, Herum KM, Dam VS, et al.Downregulation of L-type Ca2+channel in rat mesenteric arteries leads to loss of smooth muscle contractile phenotype and inward hypertrophic remodeling[J].Am J Physiol Heart Circ Physiol, 2014, 306(9):H1287-H1301.
[11] Jin HF, Liu XW, Tang YM, et al. Effects of total flavones from Dendranthema morifolium on vasocontraction and proliferation of vascular smooth muscle cells[J].Mol Med Rep, 2016, 13(1):989-993.
[12] Liu X, Yang T, Miao L, et al. Leukotriene B4 inhibits L-type calcium channels via p38 signaling pathway in vascular smooth muscle cells[J]. Cell Physiol Biochem, 2015, 37(5):1903-1913.
[13] Ouyang QF, Han Y, Lin ZH, et al. Fluvastatin upregulates the α 1C subunit of CaV1.2 channel expression in vascular smooth muscle cells via RhoA and ERK/p38 MAPK pathways[J]. Dis Markers, 2014, 2014:237067.
[14] Chellan B, Reardon CA, Getz GS, et al. Enzymatically modified low-density lipoprotein promotes foam cell formation in smooth muscle cells via macropinocytosis and enhances receptor-mediated uptake of oxidized low-density lipoprotein[J]. Arterioscler Thromb Vasc Biol, 2016, 36(6):1101-1113.
[15] Ru X, Zheng C, Zhao Q, et al. Transient receptor potential channel M2 contributes to neointimal hyperplasia in vascular walls[J].Biochim Biophys Acta, 2015, 1852(7):1360-1371.
[16] Gole HK, Tharp DL, Bowles DK. Upregulation of intermediate-conductance Ca2+-activated K+ channels(KCNN4)in porcine coronary smooth muscle requires NADPH oxidase 5(NOX5)[J]. PLoS One, 2014, 9(8):e105337.
[17] Tai S, Hu XQ, Peng DQ, et al. The roles of autophagy in vascular smooth muscle cells[J].Int J Cardiol, 2016, 211:1-6.
[18] Jia G, Cheng G, Gangahar DM, et al. Insulin-like growth factor-1 and TNF-alpha regulate autophagy through c-jun N-terminal kinase and Akt pathways in human atherosclerotic vascular smooth cells[J].Immunol Cell Biol, 2006, 84(5):448-454.
[19] Zheng YH, Tian C, Meng Y, et al. Osteopontin stimulates autophagy via integrin/CD44 and p38 MAPK signaling pathways in vascular smooth muscle cells[J].J Cell Physiol, 2012, 227(1):127-135.
[20] Yu KY, Wang YP, Wang LH, et al. Mitochondrial KATP channel involvement in angiotensin Ⅱ-induced autophagy in vascular smooth muscle cells[J].Basic Res Cardiol, 2014, 109(4):416.
[21] Grootaert MO, da Costa Martins PA, Bitsch N, et al. Defective autophagy in vascular smooth muscle cells accelerates senescence and promotes neointima formation and atherogenesis[J]. Autophagy, 2015, 11(11):2014-2032.
[22] Salabei JK, Cummins TD, Singh M, et al. PDGF-mediated autophagy regulates vascular smooth muscle cell phenotype and resistance to oxidative stress[J].Biochem J, 2013, 451(3):375-388.
[23] Ho-Tin-Noé B, Vo S, Bayles R, et al. Cholesterol crystallization in human atherosclerosis is triggered in smooth muscle cells during the transition from fatty streak to fibroatheroma[J]. J Pathol, 2017, 241(5):671-682.
[24] Li BH, Liao SQ, Yin YW, et al. Telmisartan-induced PPARγ activity attenuates lipid accumulation in VSMCs via induction of autophagy[J].Mol Biol Rep, 2015, 42(1):179-186.
[25] Li BH, Yin YW, Liu Y, et al. TRPV1 activation impedes foam cell formation by inducing autophagy in oxLDL-treated vascular smooth muscle cells[J].Cell Death Dis, 2014, 5:e1182.
[26] Xi G, Wai C, White MF, et al. Down-regulation of insulin receptor substrate 1 during hyperglycemia induces vascular smooth muscle cell dedifferentiation[J].J Biol Chem, 2017, 292(5):2009-2020.
[27] Chen J, Zhang J, Yang J, et al. Histone demethylase KDM3a, a novel regulator of vascular smooth muscle cells, controls vascular neointimal hyperplasia in diabetic rats[J]. Atherosclerosis, 2017, 257:152-163.
[28] Di Marco E, Gray SP, Kennedy K, et al. NOX4-derived reactive oxygen species limit fibrosis and inhibit proliferation of vascular smooth muscle cells in diabetic atherosclerosis[J].Free Radic Biol Med, 2016, 97:556-567.
[29] Lorentzen KA, Chai S, Chen H, et al. Mechanisms involved in extracellular matrix remodeling and arterial stiffness induced by hyaluronan accumulation[J]. Atherosclerosis, 2016, 244:195-203.
[30] Maile LA, Busby WH, Xi G, et al. An anti-αVβ3 antibody inhibits coronary artery atherosclerosis in diabetic pigs[J]. Atherosclerosis, 2017, 258:40-50.
[31] Ganguly R, Wen AM, Myer AB, et al. Anti-atherogenic effect of trivalent chromium-loaded CPMV nanoparticles in human aortic smooth muscle cells under hyperglycemic conditions in vitro[J]. Nanoscale, 2016, 8(12):6542-6554.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(81370415,81670399)
通信作者:戴秋艳,Email:daiqiuyan@medmail.com.cn
更新日期/Last Update: 2017-10-20