索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]李奋.先天性心脏病遗传机制探索任重道远[J].国际心血管病杂志,2017,05:257-259263.
点击复制

先天性心脏病遗传机制探索任重道远(PDF)

《国际心血管病杂志》[ISSN:1006-6977/CN:61-1281/TN]

期数:
2017年05期
页码:
257-259263
栏目:
述评
出版日期:
2017-10-20

文章信息/Info

Title:
-
作者:
李奋
200127 上海交通大学医学院附属上海儿童医学中心心内科
Author(s):
-
关键词:
-
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-6583.2017.05.001
文献标识码:
-
摘要:
-
Abstract:
-

参考文献/References

[1] Ewer AK, Middleton LJ, Furmston AT, et al. Pulse oximetry screening for congenital heart defects in newborn infants(PulseOx): a test accuracy study[J]. Lancet, 2011, 378(9793):785-794.
[2] Oyen N, Poulsen G, Boyd H.A, et al. Recurrence of congenital heart defects in families[J]. Circulation, 2010, 120(4):295-301.
[3] Zaidi S, Brueckner M. genetics and genomics of congenital heart disease[J]. Circ Res, 2017, 120(6):923-940.
[4] Warthen DM, Moore EC, Kamath BM, et al. Jagged1(JAG1)mutations in Alagille syndrome: increasing the mutation detection rate[J]. Hum Mutat, 2006, 27(5):436-443.
[5] Spinner NB, Colliton RP, Crosnier C, et al. Jagged1 mutations in alagille syndrome[J]. Hum Mutat, 2001,17(1):18-33.
[6] McDaniell R, Warthen DM, Sanchez-Lara PA, et al. NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway[J]. Am J Hum Genet, 2006, 79(1):169-173.
[7] Freeman SB, Bean LH, Allen EG, et al. Ethnicity, sex, and the incidence of congenital heart defects: a report from the National Down Syndrome Project[J]. Genet Med, 2008, 10(3):173-180.
[8] Sybert VP, McCauley E. Turner's syndrome[J]. N Engl J Med, 2004, 351(12):1227-1238.
[9] Korbel JO, Tirosh-Wagner T, Urban AE, et al. The genetic architecture of Down syndrome phenotypes revealed by high-resolution analysis of human segmental trisomies[J]. Proc Natl Acad Sci U S A, 2009, 106(29):12031-12036.
[10] Grossman TR, Gamliel A, Wessells RJ, et al. Over-expression of DSCAM and COL6A2 cooperatively generates congenital heart defects[J]. PLoS Genet, 2011, 7(11):e1002344.
[11] Kim DS, Kim JH, Burt AA, et al. Burden of potentially pathologic copy number variants is higher in children with isolated congenital heart disease and significantly impairs covariate-adjusted transplant-free survival[J]. J Thorac Cardiovasc Surg, 2016, 151(4):1147-1151.
[12] Merscher S, Funke B, Epstein JA, et al. TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome[J]. Cell, 2001, 104(4):619-629.
[13] Lindsay EA, Vitelli F, Su H, et al. Tbx1 haploinsufficieny in the DiGeorge syndrome region causes aortic arch defects in mice[J]. Nature, 2001, 410(6824):97-101.
[14] Jerome LA, Papaioannou VE. DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1[J]. Nat Genet, 2001, 27(3):286-291.
[15] Yagi H, Furutani Y, Hamada H, et al. Role of TBX1 in human del22q11.2 syndrome[J]. Lancet, 2003, 362(9393):1366-1373.
[16] Fulcoli FG, Franzese M, Liu X, et al. Rebalancing gene haploinsufficiency in vivo by targeting chromatin[J]. Nat Commun, 2016, 7:11688.
[17] Benson DW, Silberbach GM, Kavanaugh-McHugh A, et al. Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways[J]. J Clin Invest, 1999, 104(11):1567-1573.
[18] Wang W, Wang Y, Gong F, et al. MTHFR C677T polymorphism and risk of congenital heart defects: evidence from 29 case-control and TDT studies[J]. PLoS One, 2013, 8(3):e58041.
[19] Simeone RM, Tinker SC, Gilboa SM, et al. Proportion of selected congenital heart defects attributable to recognized risk factors[J]. Ann Epidemiol, 2016, 26(12):838-845.
[20] He A, Kong SW, Ma Q, et al. Co-occupancy by multiple cardiac transcription factors identifies transcriptional enhancers active in heart[J]. Proc Natl Acad Sci U S A, 2011, 108:5632-5637.
[21] Prall OW, Menon MK, Solloway MJ, et al. An Nkx2-5/Bmp2/Smad1 negative feedback loop controls heart progenitor specification and proliferation[J]. Cell, 2007, 128(5):947-959.
[22] Molkentin JD, Lin Q, Duncan SA, et al. Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis[J]. Genes Dev, 1997, 11(8):1061-1072.
[23] Yamagishi H, Yamagishi C, Nakagawa O, et al. The combinatorial activities of Nkx2.5 and dHAND are essential for cardiac ventricle formation[J]. Dev Biol, 2001, 239(2):190-203.
[24] Bruneau BG, Nemer G, Schmitt JP, et al. A murine model of Holt-Oram syndrome defines roles of the T-box transcription factor Tbx5 in cardiogenesis and disease[J]. Cell, 2001, 106(6):709-721.
[25] Zaidi S, Choi M, Wakimoto H, et al. De novo mutations in histone-modifying genes in congenital heart disease[J]. Nature, 2013, 498(7453):220-223.
[26] Takeuchi JK, Bruneau BG. Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors[J]. Nature, 2009, 459(7247):708-711.
[27] Li N, Subrahmanyan L, Smith E, et al. Mutations in the histone modifier PRDM6 are associated with isolated nonsyndromic patent ductus arteriosus[J]. Am J Hum, Genet, 2016, 99(4):1082-1091.
[28] Bikoff EK, Morgan MA, Robertson EJ. An expanding job description for Blimp-1/PRDM1.Curr Opin[J]. Genet Dev, 2009, 19(4):379-385.
[29] Lange M, Kaynak B, Forster UB, et al. Regulation of muscle development by DPF3, a novel histone acetylation and methylation reader of the BAF chromatin remodeling complex[J]. Genes Dev, 2008, 22(17):2370-2384.
[30] Kennedy MP, Omran H, Leigh MW, et al. Congenital heart disease and other heterotaxic defects in a large cohort of patients with primary ciliary dyskinesia[J]. Circulation, 2007, 115(2):2814-2821.
[31] Noone PG, Leigh MW, Sannuti A, et al. Primary ciliary dyskinesia: diagnostic and phenotypic features[J]. Am J Respir Crit Care Med, 2004, 169(4):459-467.
[32] Toomer KA, Fulmer D, Guo L, et al. A role for primary cilia in aortic valve development and disease[J].Dev Dyn, 2017, 246(8):625-634.
[33] Landis BJ, Ware SM. The current landscape of genetic testing in cardiovascular malformations: opportunities and challenges[J]. Front Cardiovasc Med, 2016, 3, 22.
[34] LaHaye S, Corsmeier D, Basu M, et al. Utilization of whole exome sequencing to identify causative mutations in familial congenital heart disease[J]. Circ Cardiovasc Genet, 2016, 9(4):320-329.
[35] Deciphering Developmental Disorders Study. Prevalence and architecture of de novo mutations in developmental disorders[J]. Nature, 2017, 542(7642):433-438.
[36] Sifrim A, Hitz MP, Wilsdon A, et al. Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing[J]. Nat Genet, 2016, 48(9):1060-1065.

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2017-10-20