索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]戢艳琼,罗娟,陶晓军等.纳米转运药物在心血管疾病诊断与治疗中的应用[J].国际心血管病杂志,2017,05:264-267270.
点击复制

纳米转运药物在心血管疾病诊断与治疗中的应用(PDF)

《国际心血管病杂志》[ISSN:1006-6977/CN:61-1281/TN]

期数:
2017年05期
页码:
264-267270
栏目:
综述
出版日期:
2017-10-20

文章信息/Info

Title:
-
作者:
戢艳琼罗娟陶晓军等
442000 十堰,湖北医药学院太和医院心血管科(戢艳琼); 湖北医药学院药理教研室(罗娟,张秋芳); 410000 长沙,湖南师范大学医学院药物工程实验室(陶晓军)
Author(s):
-
关键词:
纳米转运药物 心血管疾病 动脉粥样硬化 心肌梗死 心力衰竭
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-6583.2017.05.003
文献标识码:
-
摘要:
纳米转运药物为心血管疾病的诊断与治疗提供了一种新型给药方式,可解决药物作用时间短、靶向特异性和靶 组织浓度低等问题。纳米转运药物可利用血管通透性增加或通过巨噬细胞吞噬作用被动靶向转运至心肌组织,也可通过 结合心血管疾病特异性靶点主动靶向转运至心肌组织。该文介绍纳米转运药物在动脉粥样硬化、心肌梗死、心力衰竭等 疾病诊断与治疗中的应用。
Abstract:
-

参考文献/References

[1] Sharma PA, Maheshwari R, Tekade M, et al. Nanomaterial based approaches for the diagnosis and therapy of cardiovascular diseases[J]. Curr Pharm Des, 2015, 21(30):4465-4478.
[2] Lin X, Wang Z, Sun G, et al. A sensitive and specific HPGPC-FD method for the study of pharmacokinetics and tissue distribution of Radix Ophiopogonis polysaccharide in rats[J]. Biomed Chromatogr, 2010, 24(8):820-825.
[3] Tan J, Thomas A, Liu Y. Influence of red blood cells on nanoparticle targeted delivery in microcirculation[J]. Soft Matter, 2011, 8:1934-1946.
[4] Toy R, Hayden E, Shoup C, et al. The effects of particle size, density and shape on margination of nanoparticles in microcirculation[J]. Nanotechnology, 2011, 22(11): 115101.
[5] Lin X, Wang ZJ, Wang S, et al. Comparison of tissue distribution of a PEGylated Radix Ophiopogonis polysaccharide in mice with normal and ischemic myocardium[J]. Eur J Pharm Biopharm, 2011, 79(3):621- 626.
[6] Dvir T, Bauer M, Schroeder A, et al. Nanoparticles targeting the infarcted heart[J]. Nano Lett, 2011, 11(10):4411-4414.
[7] Spragg DD, Alford DR, Greferath R, et al. Immunotargeting of liposomes to activated vascular endothelial cells: a strategy for site-selective delivery in the cardiovascular system[J]. Proc Natl Acad Sci U S A, 1997, 94(16):8795-8800.
[8] Chen W, Cormode DP, Fayad ZA, et al. Nanoparticles as magnetic resonance imaging contrast agents for vascular and cardiac diseases[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2014, 3(2):146-161.
[9] Yoo SP, Pineda F, Barrett JC, et al. Gadolinium-functionalized peptide amphiphile micelles for multimodal imaging of atherosclerotic lesions[J]. ACS omega, 2016, 1(5):996-1003.
[10] Galperin A, Margel D, Baniel J, et al. Radiopaque iodinated polymeric nanoparticles for X-ray imaging applications[J]. Biomaterials, 2007, 28(30):4461-4468.
[11] Chhour P, Naha PC, O'neill SM, et al. Labeling monocytes with gold nanoparticles to track their recruitment in atherosclerosis with computed tomography[J]. Biomaterials, 2016, 87:93-103.
[12] Kim DE, Kim JY, Sun IC, et al. Hyperacute direct thrombus imaging using computed tomography and gold nanoparticles[J]. Ann Neurol, 2013, 73(5):617-625.
[13] Winter PM, Caruthers SD, Zhang H, et al. Antiangiogenic synergism of integrin-targeted fumagillin nanoparticles and atorvastatin in atherosclerosis[J]. JACC Cardiovasc Imaging, 2008, 1(5):624-634.
[14] Nabel EG, Braunwald E. A tale of coronary artery disease and myocardial infarction[J]. N Engl J Med, 2012, 366(1):54-63.
[15] van der Wall EE. Molecular imaging of coronary atherosclerosis; predictive of an acute myocardial infarction?[J]. Neth Heart J, 2014, 22(1):1-2.
[16] Acharya S, Sahoo SK. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect[J]. Adv Drug Deliv Rev, 2011, 63(3):170-183.
[17] Katsuki S, Matoba T, Nakashiro S, et al. Nanoparticle-mediated delivery of pitavastatin inhibits atherosclerotic plaque destabilization/rupture in mice by regulating the recruitment of inflammatory monocytes[J]. Circulation, 2014, 129(8):896-906.
[18] Nagaoka K, Matoba T, Mao Y, et al. A new therapeutic modality for acute myocardial infarction: nanoparticle-mediated delivery of pitavastatin induces cardioprotection from ischemia-reperfusion injury via activation of PI3K/Akt pathway and anti-inflammation in a rat model[J]. PLoS One, 2015, 10 (7):e0132451.
[19] Beldman TJ, Senders ML, Alaarg A, et al. Hyaluronan nanoparticles selectively target plaque- associated macrophages and improve plaque stability in atherosclerosis[J]. ACS Nano, 2017, 11(6):5785- 5799.
[20] Chmielowski RA, Abdelhamid DS, Faig JJ, et al. Athero-inflammatory nanotherapeutics: ferulic acid- based poly(anhydride-ester)nanoparticles attenuate foam cell formation by regulating macrophage lipogenesis and reactive oxygen species generation[J]. Acta Biomater, 2017, 57:85-94.
[21] Hausenloy DJ, Yellon DM. Myocardial ischemia-reperfusion injury: a neglected therapeutic target[J]. J Clin Invest, 2013, 123(1):92-100.
[22] Wang K, An T, Zhou LY, et al. E2F1-regulated miR-30b suppresses Cyclophilin D and protects heart from ischemia/reperfusion injury and necrotic cell death[J]. Cell Death Differ, 2015, 22(5):743-754.
[23] Alam MR, Baetz D, Ovize M. Cyclophilin D and myocardial ischemia-reperfusion injury: a fresh perspective[J]. J Mol Cell Cardiol, 2015, 78:80-89.
[24] Ikeda G, Matoba T, Nakano Y, et al. Nanoparticle-mediated targeting of cyclosporine A enhances cardioprotection against ischemia-reperfusion injury through inhibition of mitochondrial permeability transition pore opening[J]. Sci Rep, 2016, 6:20467.
[25] Sager HB, Dutta P, Dahlman JE, et al. RNAi targeting multiple cell adhesion molecules reduces immune cell recruitment and vascular inflammation after myocardial infarction[J]. Sci Transl Med, 2016, 8(342):342ra80.
[26] Takahama H, Minamino T, Asanuma H, et al. Prolonged targeting of ischemic/reperfused myocardium by liposomal adenosine augments cardioprotection in rats[J]. J Am Coll Cardiol, 2009, 53(8):709-717.
[27] Richardson TP, Peters MC, Ennett AB, et al. Polymeric system for dual growth factor delivery[J]. Nat Biotechnol, 2001, 19(11):1029-1034.
[28] Lin YD, Yeh ML, Yang YJ, et al. Intramyocardial peptide nanofiber injection improves postinfarction ventricular remodeling and efficacy of bone marrow cell therapy in pigs[J]. Circulation, 2010, 122(11 Suppl):S132-S141.
[29] Chen L, Han D, Jiang L. On improving blood compatibility: from bioinspired to synthetic design and fabrication of biointerfacial topography at micro/nano scales[J]. Colloids Surf B Biointerfaces, 2011, 85(1):2-7.
[30] Somasuntharam I, Boopathy AV, Khan RS, et al. Delivery of Nox2-NADPH oxidase siRNA with polyketal nanoparticles for improving cardiac function following myocardial infarction[J]. Biomaterials, 2013, 34 (31):7790-7798.
[31] Nguyen MM, Carlini AS, Chien MP, et al. Enzyme-responsive nanoparticles for targeted accumulation and prolonged retention in heart tissue after myocardial infarction[J]. Adv Mater, 2015, 27(37):5547- 5552.
[32] Margulis K, Neofytou EA, Beygui RE. Celecoxib nanoparticles for therapeutic angiogenesis[J]. ACS Nano, 2015, 9(9):9416-9426.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(81303254,81641140); 湖北省卫生计生委科研项目(WJ2017M214)
通信作者:张秋芳,Email:zqf1112000@163.com
更新日期/Last Update: 2017-10-20