索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]李公豪,徐良成,赵艳丽,等.血管紧张素Ⅱ在心血管疾病动物模型构建中 的应用进展[J].国际心血管病杂志,2023,02:99-103.
点击复制

血管紧张素Ⅱ在心血管疾病动物模型构建中 的应用进展(PDF)

《国际心血管病杂志》[ISSN:1006-6977/CN:61-1281/TN]

期数:
2023年02期
页码:
99-103
栏目:
综述
出版日期:
2023-03-20

文章信息/Info

Title:
-
作者:
李公豪徐良成赵艳丽彭中兴赵云峰
220061 连云港,南京医科大学康达学院第一附属医院 连云港市第一人民医院心血管内科
Author(s):
-
关键词:
血管紧张素Ⅱ心血管疾病动物模型
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-6583.2023.02.010
文献标识码:
-
摘要:
肾素- 血管紧张素- 醛固酮系统(RAAS)的慢性激活可促进充血性心力衰 竭、系统性高血压和慢性肾脏疾病的发生、发展。血管紧张素Ⅱ(Ang Ⅱ)是RASS 介导 心血管疾病的主要效应物质,具有多种生理和病理效应。基于此,Ang Ⅱ可用于构建多种心 血管疾病动物模型,在针对RASS 相关心血管疾病的治疗研究中发挥了重要作用。该文介绍 Ang Ⅱ在构建心血管疾病动物模型中的应用,及其在高血压、心肌肥大和纤维化、腹主动脉 瘤、主动脉夹层、心房颤动及心脏瓣膜病等心血管疾病治疗中作为干预靶点的研究。
Abstract:
-

参考文献/References

[1] Ames MK, Atkins CE, Pitt B. The renin-angiotensinaldosterone system and its suppression[J]. J Vet Intern Med, 2019, 33(2):363-382.
[2] Kamkar-Del Y, Mohebbati R, Hosseini M, et al. Ethyl acetate and aqueous fractions of ziziphus jujuba prevent acute hypertension induced by angiotensin Ⅱ in rats[J]. Cardiovasc Hematol Disord Drug Targets, 2020, 20(2):108-115.
[3] Shanks J, de Morais SDB, Gao L, et al. TRPV1 (transient receptor potential vanilloid 1) cardiac spinal afferents contribute to hypertension in spontaneous hypertensive rat[J]. Hypertension, 2019, 74(4):910-920.
[4] Leal J, Teixeira-Santos L, Pinho D, et al. L-proline supplementation improves nitric oxide bioavailability and counteracts the blood pressure rise induced by angiotensin Ⅱ in rats[J]. Nitric Oxide, 2019, 82:1-11.
[5] Jurado Acosta A, Rys? J, Szabo Z, et al. Phosphorylation of GATA4 at serine 105 is required for left ventricular remodelling process in angiotensin Ⅱ-induced hypertension in rats[J]. Basic Clin Pharmacol Toxicol, 2020, 127(3):178-195.
[6] Veiras LC, McFarlin BE, Ralph DL, et al. Electrolyte and transporter responses to angiotensin Ⅱ induced hypertension in female and male rats and mice[J]. Acta Physiol (Oxf), 2020, 229(1):e13448.
[7] Wang H, Yuan Z, Wang B, et al. COMP (cartilage oligomeric matrix protein), a novel PIEZO1 regulator that controls blood pressure[J]. Hypertension, 2022, 79(3):549-561.
[8] Medina AJ, Pinilla OA, Portiansky EL, et al. Silencing of the Na+/H+ exchanger 1 (NHE-1) prevents cardiac structural and functional remodeling induced by angiotensin Ⅱ[J]. Exp Mol Pathol, 2019, 107:1-9.
[9] Piek A, Koonen DPY, Schouten EM, et al. Pharmacological myeloperoxidase (MPO) inhibition in an obese/hypertensive mouse model attenuates obesity and liver damage, but not cardiac remodeling[J]. Sci Rep, 2019, 9(1):18765.
[10] Mele L, Maskell LJ, Stuckey DJ, et al. The POU4F2/Brn-3b transcription factor is required for the hypertrophic response to angiotensin Ⅱ in the heart[J]. Cell Death Dis, 2019, 10(8):621.
[11] Valls-Lacalle L, Negre-Pujol C, Rodríguez C, et al. Opposite effects of moderate and extreme Cx43 deficiency in conditional Cx43-deficient mice on angiotensin Ⅱ-induced cardiac fibrosis[J]. Cells, 2019, 8(10):1299.
[12] Cheng YW, Zhang ZB, Lan BD, et al. PDGF-D activation by macrophage-derived uPA promotes AngⅡ-induced cardiac remodeling in obese mice[J]. J Exp Med, 2021, 218(9):e20210252.
[13] Wu P, Liu ZZ, Zhao TT, et al. Lovastatin attenuates angiotensinⅡinduced cardiovascular fibrosis through the suppression of YAP/TAZ signaling[J]. Biochem Biophys Res Commun, 2019, 512(4):736-741.
[14] Broekmans K, Giesen J, Menges L, et al. Angiotensin Ⅱ-induced cardiovascular fibrosis is attenuated by NOsensitive guanylyl cyclase1[J]. Cells, 2020, 9(11):2436.
[15] Li ML, Li RN, Ma YM, et al. MiRNA-1297 inhibits myocardial fibrosis by targeting ULK1[J]. Eur Rev Med Pharmacol Sci, 2020, 24(4):2070-2076.
[16] Sawada H, Lu HS, Cassis LA, et al. Twenty years of studying AngⅡ (angiotensin Ⅱ)-induced abdominal aortic pathologies in mice: continuing questions and challenges to provide insight into the human disease[J]. Arterioscler Thromb Vasc Biol, 2022, 42(3):277-288.
[17] Hou XH, Yang SB, Zheng Y. Licochalcone a attenuates abdominal aortic aneurysm induced by angiotensinⅡvia regulating the miR-181b/SIRT1/HO-1 signaling[J]. J Cell Physiol, 2019, 234(5):7560-7568.
[18] Cai L, Tang HF, Zhou M, et al. Artesunate attenuated the progression of abdominal aortic aneurysm in a mouse model[J]. J Surg Res, 2021, 267:404-413.
[19] Xue M, Li G, Li D, et al. Up-regulated MCPIP1 in abdominal aortic aneurysm is associated with vascular smooth muscle cell apoptosis and MMPs production[J]. Biosci Rep, 2019, 39(11):BSR20191252.
[20] Horimatsu T, Blomkalns AL, Ogbi M, et al. Niacin protects against abdominal aortic aneurysm formation via GPR109A independent mechanisms: role of NAD+/nicotinamide[J]. Cardiovasc Res, 2020, 116(14):2226-2238.
[21] Hatipoglu OF, Miyoshi T, Yonezawa T, et al. Deficiency of CD44 prevents thoracic aortic dissection in a murine model[J]. Sci Rep, 2020, 10(1):6869.
[22] Tomida S, Aizawa KNH, Nishida N, et al. Indomethacin reduces rates of aortic dissection and rupture of the abdominal aorta by inhibiting monocyte/macrophage accumulation in a murine model[J]. Sci Rep, 2019, 9(1):10751.
[23] Ito S, Hashimoto Y, Majima R, et al. MRTF-A promotes angiotensin Ⅱ-induced inflammatory response and aortic dissection in mice[J]. PLoS One, 2020, 15(3):e0229888.
[24] Lagrange J, Finger S, Kossmann S, et al. Angiotensin Ⅱ infusion leads to aortic dissection in LRP8 deficient mice[J]. Int J Mol Sci, 2020, 21(14):4916.
[25] Gao YX, Wang ZZ, Zhao JQ, et al. Involvement of B cells in the pathophysiology of β-aminopropionitrile-induced thoracic aortic dissection in mice[J]. Exp Anim, 2019, 68(3):331-339.
[26] Zhou B, Li W, Zhao GZ, et al. Rapamycin prevents thoracic aortic aneurysm and dissection in mice[J]. J Vasc Surg, 2019, 69(3):921-932.
[27] Li X, Liu D, Zhao LJ, et al. Targeted depletion of monocyte/ macrophage suppresses aortic dissection with the spatial regulation of MMP-9 in the aorta[J]. Life Sci, 2020, 254:116927.
[28] Zhao ZM, Wang Y, Li SH, et al. HSP90 inhibitor 17-DMAG effectively alleviated the progress of thoracic aortic dissection by suppressing smooth muscle cell phenotypic Switch[J]. Am J Transl Res, 2019, 11(1):509-518.
[29] Zhan YG, Abe I, Nakagawa M, et al. A traditional herbal medicine rikkunshito prevents angiotensin Ⅱ-induced atrial fibrosis and fibrillation[J]. J Cardiol, 2020, 76(6):626-635.
[30] Lee MA, Raad N, Song MH, et al. The matricellular protein CCN5 prevents adverse atrial structural and electrical remodelling[J]. J Cell Mol Med, 2020, 24(20):11768-11778.
[31] Hu J, Zhang JJ, Li L, et al. PU.1 inhibition attenuates atrial fibrosis and atrial fibrillation vulnerability induced by angiotensin-Ⅱ by reducing TGF-β1/Smads pathway activation[J]. J Cell Mol Med, 2021, 25(14):6746-6759.
[32] Lv XW, Lu P, Hu YS, et al. Overexpression of MiR-29b- 3p inhibits atrial remodeling in rats by targeting PDGF-B signaling pathway[J]. Oxid Med Cell Longev, 2021, 2021:3763529.
[33] Ge ZW, Chen YM, Wang B, et al. MFGE8 attenuates Ang-Ⅱ- induced atrial fibrosis and vulnerability to atrial fibrillation through inhibition of TGF-β1/Smad2/3 pathway[J]. J Mol Cell Cardiol, 2020, 139:164-175.
[34] Lu L, Cao L, Liu YH, et al. Angiotensin (ang) 1-7 inhibits AngⅡ-induced atrial fibrosis through regulating the interaction of proto-oncogene tyrosine-protein kinase Src (c-Src) and Src homology region 2 domain-containing phosphatase-1 (SHP-1) [J]. Bioengineered, 2021, 12(2):10823-10836.
[35] He S, Nian FL, Chen W, et al. I-κB kinase-ε knockout protects against angiotensin Ⅱ induced aortic valve thickening in apolipoprotein E deficient mice[J]. Biomed Pharmacother, 2019, 109:1287-1295.

备注/Memo

备注/Memo:
基金项目:南京医科大学康达学院科研发展基金(KD2019KYJJYB018);连云港市第一人民医院英才基金(QN202003) 通信作者:赵云峰, E-mail:yfzhao7637@sohu.com
更新日期/Last Update: 2023-03-20