索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]秦铭,李宁,陈乾,等.心力衰竭自主神经调节器械疗法研究进展[J].国际心血管病杂志,2023,02:81-84,91.
点击复制

心力衰竭自主神经调节器械疗法研究进展(PDF)

《国际心血管病杂志》[ISSN:1006-6977/CN:61-1281/TN]

期数:
2023年02期
页码:
81-84,91
栏目:
综述
出版日期:
2023-03-20

文章信息/Info

Title:
-
作者:
秦铭李宁陈乾徐志云
200433 上海海军军医大学附属长海医院心血管外科
Author(s):
-
关键词:
心力衰竭自主神经系统器械疗法临床试验
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-6583.2023.02.005
文献标识码:
-
摘要:
治疗心力衰竭的自主神经调节器械疗法,按其作用靶点可分为压力感受器、迷 走神经、内脏神经、膈神经、肾神经和脊髓神经等6 种途径。该文介绍了各种疗法的技术 特征及临床试验结果。
Abstract:
-

参考文献/References

[1] Roger VL. Epidemiology of heart failure: a contemporary perspective[J]. Circ Res, 2021, 128(10):1421-1434.
[2] Orso F, Fabbri G, Maggioni AP. Epidemiology of heart failure[J]. Handb Exp Pharmacol, 2017, 243:15-33.
[3] Heidenreich PA, Bozkurt B, Aguilar D, et al. 2022 AHA/ ACC/HFSA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines[J]. Circulation, 2022, 145(18):e895-e1032.
[4] Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines[J]. J Am Coll Cardiol, 2013, 62(16):e147-e239.
[5] Pascual-Figal D, Wachter R, Senni M, et al. Rationale and design of TRANSITION: a randomized trial of pre-discharge vs. post-discharge initiation of sacubitril/valsartan[J]. ESC Heart Fail, 2018, 5(2):327-336.
[6] Mascolo A, di Mauro G, Cappetta D, et al. Current and future therapeutic perspective in chronic heart failure[J]. Pharmacol Res, 2022, 175:106035.
[7] Gronda E, Seravalle G, Brambilla G, et al. Chronic baroreflex activation effects on sympathetic nerve traffic, baroreflex function, and cardiac haemodynamics in heart failure: a proofof- concept study[J]. Eur J Heart Fail, 2014, 16(9):977-983.
[8] Lachowska K, Grucha?a M, Narkiewicz K, et al. Sympathetic activation in chronic heart failure: potential benefits of interventional therapies[J]. Curr Hypertens Rep, 2016, 18(7): 51.
[9] Stavrakis S, Kulkarni K, Singh JP, et al. Autonomic modulation of cardiac arrhythmias: methods to assess treatment and outcomes[J]. JACC Clin Electrophysiol, 2020, 6(5):467-483.
[10] Wagner BR, Frishman WH. Devices for autonomic regulation therapy in heart failure with reduced ejection fraction[J]. Cardiol Rev, 2018, 26(1):43-49.
[11] Borovac JA, D'Amario D, Bozic J, et al. Sympathetic nervous system activation and heart failure: current state of evidence and the pathophysiology in the light of novel biomarkers[J]. World J Cardiol, 2020, 12(8):373-408.
[12] Guzik M, Urban S, Iwanek G, et al. Novel therapeutic devices in heart failure[J]. J Clin Med, 2022, 11(15):4303.
[13] Buckley U, Shivkumar K, Ardell JL. Autonomic regulation therapy in heart failure[J]. Curr Heart Fail Rep, 2015, 12(4): 284-293.
[14] Konstam MA, Mann DL, Udelson JJE, et al. Advances in our clinical understanding of autonomic regulation therapy using vagal nerve stimulation in patients living with heart failure[J]. Front Physiol, 2022, 13:857538.
[15] Singh JP, Kandala J, Camm AJ. Non-pharmacological modulation of the autonomic tone to treat heart failure[J]. Eur Heart J, 2014, 35(2):77-85.
[16] Burgoyne S, Georgakopoulos D, Belenkie I, et al. Systemic vascular effects of acute electrical baroreflex stimulation[J]. Am J Physiol Heart Circ Physiol, 2014, 307(2):H236-H241.
[17] Zile MR, Lindenfeld JA, Weaver FA, et al. Baroreflex activation therapy in patients with heart failure with reduced ejection fraction[J]. J Am Coll Cardiol, 2020, 76(1):1-13.
[18] Gronda E, Brambilla GM, Seravalle G, et al. Effects of chronic carotid baroreceptor activation on arterial stiffness in severe heart failure[J]. Clin Res Cardiol, 2016, 105(10):838-846.
[19] Peter DA, Alemu Y, Xenos M, et al. Fluid structure interaction with contact surface methodology for evaluation of endovascular carotid implants for drug-resistant hypertension treatment[J]. J Biomech Eng, 2012, 134(4):041001.
[20] van Kleef MEAM, Devireddy CM, van der Heyden J, et al. Treatment of resistant hypertension with endovascular baroreflex amplification: 3-year results from the CALM-FIM study[J]. JACC Cardiovasc Interv, 2022, 15(3):321-332.
[21] Spiering W, Williams B, Van der Heyden J, et al. Endovascular baroreflex amplification for resistant hypertension: a safety and proof-of-principle clinical study[J]. Lancet, 2017, 390(10113): 2655-2661.
[22] Nearing BD, Libbus I, Carlson GM, et al. Chronic vagus nerve stimulation is associated with multi-year improvement in intrinsic heart rate recovery and left ventricular ejection fraction in ANTHEM-HF[J]. Clin Auton Res, 2021, 31(3): 453-462.
[23] Gold MR, Van Veldhuisen DJ, Hauptman PJ, et al. Vagus nerve stimulation for the treatment of heart failure: the INOVATEHF trial[J]. J Am Coll Cardiol, 2016, 68(2):149-158.
[24] Premchand RK, Sharma K, Mittal S, et al. Autonomic regulation therapy via left or right cervical vagus nerve stimulation in patients with chronic heart failure: results of the ANTHEM-HF trial[J]. J Card Fail, 2014, 20(11):808-816.
[25] Sharma K, Premchand RK, Mittal S, et al. Long-term followup of patients with heart failure and reduced ejection fraction receiving autonomic regulation therapy in the anthem-hf pilot study[J]. Int J Cardiol, 2021, 323:175-178.
[26] DiCarlo LA, Libbus I, Kumar HU, et al. Autonomic regulation therapy to enhance myocardial function in heart failure patients: the ANTHEM-HFpEF study[J]. ESC Heart Fail, 2018, 5(1):95-100.
[27] Fudim M, Hernandez AF, Felker GM. Role of volume redistribution in the congestion of heart failure[J]. J Am Heart Assoc, 2017, 6(8):e006817.
[28] Fallick C, Sobotka PA, Dunlap ME. Sympathetically mediated changes in capacitance: redistribution of the venous reservoir as a cause of decompensation[J]. Circ Heart Fail, 2011, 4(5): 669-675.
[29] Barnes RJ, Bower EA, Rink TJ. Haemodynamic responses to stimulation of the splanchnic and cardiac sympathetic nerves in the anaesthetized cat[J]. J Physiol, 1986, 378:417-436.
[30] Fudim M, Patel MR, Boortz-Marx R, et al. Splanchnic nerve block mediated changes in stressed blood volume in heart failure[J]. JACC Heart Fail, 2021, 9(4):293-300.
[31] Fudim M, Ponikowski PP, Burkhoff D, et al. Splanchnic nerve modulation in heart failure: mechanistic overview, initial clinical experience, and safety considerations[J]. Eur J Heart Fail, 2021, 23(7):1076-1084.
[32] Abraham WT, Jagielski D, Oldenburg O, et al. Phrenic nerve stimulation for the treatment of central sleep apnea[J]. JACC Heart Fail, 2015, 3(5):360-369.
[33] Zhang XL, Ding N, Ni BQ, et al. Safety and feasibility of chronic transvenous phrenic nerve stimulation for treatment of central sleep apnea in heart failure patients[J]. Clin Respir J, 2017, 11(2):176-184.
[34] Hopper I, Gronda E, Hoppe UC, et al. Sympathetic response and outcomes following renal denervation in patients with chronic heart failure: 12-Month outcomes from the symplicity HF feasibility study[J]. J Card Fail, 2017, 23(9):702-707.
[35] Bertog S, Sharma A, Mahfoud F, et al. Alcohol-Mediated renal sympathetic neurolysis for the treatment of hypertension: the peregrine? infusion catheter[J]. Cardiovasc Revasc Med, 2021, 24:77-86.
[36] Sharp TE3, Lefer DJ. Renal denervation to treat heart failure[J]. Annu Rev Physiol, 2021, 83:39-58.
[37] Zipes DP, Neuzil P, Theres H, et al. Determining the feasibility of spinal cord neuromodulation for the treatment of chronic systolic heart failure: the DEFEAT-HF study[J]. JACC Heart Fail, 2016, 4(2):129-136.
[38] Schwartz PJ, La Rovere MT, De Ferrari GM, et al. Autonomic modulation for the management of patients with chronic heart failure[J]. Circ Heart Fail, 2015, 8(3):619-628.
[39] Tse HF, Turner S, Sanders P, et al. Thoracic spinal cord stimulation for heart failure as a restorative treatment (SCS HEART study): first-in-man experience[J]. Heart Rhythm, 2015, 12(3):588-595.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(81870287);长海医院“深蓝123” 重点攻关项目(2019YSL003) 通信作者:徐志云, E-mail:zhiyunxu@hotmail.com
更新日期/Last Update: 2023-03-20