索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]林梦璐,谢玉才.血液中有形成分在心房颤动血栓形成中的作用[J].国际心血管病杂志,2022,01:25-27,47.
点击复制

血液中有形成分在心房颤动血栓形成中的作用(PDF)

《国际心血管病杂志》[ISSN:1006-6977/CN:61-1281/TN]

期数:
2022年01期
页码:
25-27,47
栏目:
综述
出版日期:
2022-02-10

文章信息/Info

Title:
-
作者:
林梦璐谢玉才
作者单位:200025 上海交通大学医学院附属瑞金医院心内科
Author(s):
-
关键词:
心房颤动血栓形成有形成分
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-6583.2022.01.007
文献标识码:
-
摘要:
心房颤动(房颤)是较为常见的心律失常,以往研究多关注左心耳局部因素和 血液中无形成分对房颤血栓形成的影响,但越来越多的研究发现,血液中各种有形成分,如血 小板、单核细胞、巨噬细胞、淋巴细胞、红细胞、粒细胞、循环微粒等,对房颤血栓形成也 起到重要的作用。
Abstract:
-

参考文献/References

[1] Benjamin EJ, Muntner P, Alonso AA, et al. Heart disease and stroke statistics—2019 update a report from the American Heart Association[J]. Circulation, 2019, 139(10):E56-E528.
[2] Wang CC, Lin CL, Gj W, et al. Atrial fibrillation associated with increased risk of venous thromboembolism. A populationbased cohort study[J]. Thromb Haemost, 2015, 113(1):185- 192.
[3] Sundb?ll J, Hováth-Puhó E, Adelborg K, et al. Risk of arterial and venous thromboembolism in patients with atrial fibrillation or flutter: a nationwide population-based cohort study[J]. Int J Cardiol, 2017, 241:182-187.
[4] Enga KF, Rye-Holmboe I, Hald EM, et al. Atrial fibrillation and future risk of venous thromboembolism: the Troms? study[J]. J Thromb Haemost, 2015, 13(1):10-16.
[5] Watson T, Shantsila E, Lip GY. Mechanisms of thrombogenesis in atrial fibrillation: Virchow's triad revisited[J]. Lancet, 2009, 373(9658):155-166.
[6] Khan AA, Lip GYH. The prothrombotic state in atrial fibrillation: pathophysiological and management implications[J]. Cardiovasc Res, 2019, 115(1):31-45.
[7] Pongratz G, Brandt-Pohlmann M, Henneke KH, et al. Platelet activation in embolic and preembolic status of patients with nonrheumatic atrial fibrillation[J]. Chest, 1997, 111(4):929-933.
[8] Choudhury A, Chung I, Blann AD, et al. Elevated platelet microparticle levels in nonvalvular atrial fibrillation: relationship to p-selectin and antithrombotic therapy[J]. Chest, 2007, 131(3):809-815.
[9] Fu R, Wu S, Wu P, et al. A study of blood soluble P-selectin, fibrinogen, and von Willebrand factor levels in idiopathic and lone atrial fibrillation[J]. Europace, 2011, 13(1):31-36.
[10] Makowski M, Smor?g I, Bissinger A, et al. Effect of sinus rhythm restoration on platelet function in patients with lone atrial fibrillation[J]. Int J Cardiol, 2014, 172(1):e22-e23.
[11] Wu N, Tong S, Xiang Y, et al. Association of hemostatic markers with atrial fibrillation: a meta-analysis and metaregression[ J]. PLoS One, 2015, 10(4):e0124716.
[12] Makowski M, Baj Z. Platelet reactivity and mean platelet volume as risk markers of thrombogenesis in atrial fibrillation[J]. Int J Cardiol, 2017, 244:204.
[13] Choi SW, Kim BB, Choi DH, et al. Stroke or left atrial thrombus prediction using antithrombin Ⅲ and mean platelet volume in patients with nonvalvular atrial fibrillation[J]. Clin Cardiol, 2017, 40(11):1013-1019.
[14] Martischnig AM, Mehilli J, Pollak J, et al. Impact of dabigatran versus phenprocoumon on ADP induced platelet aggregation in patients with atrial fibrillation with or without concomitant clopidogrel therapy (the Dabi-ADP-1 and Dabi- ADP-2 trials)[J]. Biomed Res Int, 2015, 2015:798486.
[15] Duzen IV, Oguz E, Cekici Y, et al. Effect of new oral anticoagulants on platelet indices in non-valvular atrial fibrillation patients[J]. Herz, 2021, 46(1):76-81.
[16] Voukalis C, Lip GYH, Shantsila E. Effects of antithrombotic drugs on the prothrombotic state in patients with atrial fibrillation: the west Birmingham atrial fibrillation project[J]. Thromb Res, 2021, 200:149-155.
[17] Peshkova AD, Le Minh G, Tutwiler V, et al. Activated monocytes enhance platelet-driven contraction of blood clots via tissue factor expression[J]. Sci Rep, 2017, 7(1):5149.
[18] Allen N, Barrett TJ, Guo Y, et al. Circulating monocyteplatelet aggregates are a robust marker of platelet activity in cardiovascular disease[J]. Atherosclerosis, 2019, 282:11-18.
[19] Lukasik M, Dworacki G, Kufel-Grabowska J, et al. Upregulation of CD40 ligand and enhanced monocyteplatelet aggregate formation are associated with worse clinical outcome after ischaemic stroke[J]. Thromb Haemost, 2012, 107(2):346-355.
[20] Pfluecke C, Tarnowski D, Plichta L, et al. Monocyteplatelet aggregates and CD11b expression as markers for thrombogenicity in atrial fibrillation[J]. Clin Res Cardiol, 2016, 105(4):314-322.
[21] He G, Tan W, Wang B, et al. Increased M1 macrophages infiltration is associated with thrombogenesis in rheumatic mitral stenosis patients with atrial fibrillation[J]. PLoS One, 2016, 11(3):e0149910.
[22] Liu Y, Shi Q, Ma Y, et al. The role of immune cells in atrial fibrillation[J]. J Mol Cell Cardiol, 2018, 123:198-208.
[23] Sulzgruber P, Thaler B, Koller L, et al. CD4+CD28null T lymphocytes are associated with the development of atrial fibrillation after elective cardiac surgery[J]. Sci Rep, 2018, 8(1):9624.
[24] Kazem N, Sulzgruber P, Thaler B, et al. CD8+CD28null T lymphocytes are associated with the development of atrial fibrillation after elective cardiac surgery[J]. Thromb Haemost, 2020, 120(8):1182-1187.
[25] ?im?ek B, Altay S, ?zbilgin N, et al. Autoimmune activation as a determinant of atrial fibrillation among Turks: a prospective evaluation[J]. Medicine (Baltimore), 2018, 97(31):e11779.
[26] Melduni RM, Cooper LT, Gersh BJ, et al. Association of autoimmune vasculitis and incident atrial fibrillation: a population-based case-control study[J]. J Am Heart Assoc, 2020, 9(18):e015977.
[27] Yalcin M, Aparci M, Uz O, et al. Neutrophil-lymphocyte ratio may predict left atrial thrombus in patients with nonvalvular atrial fibrillation[J]. Clin Appl Thromb Hemost, 2015, 21(2):166-171.
[28] Kaya MG, Akpek M, Elcik D, et al. Relation of left atrial spontaneous echocardiographic contrast in patients with mitral stenosis to inflammatory markers[J]. Am J Cardiol, 2012, 109(6):851-855.
[29] Saliba W, Barnett-Griness O, Elias M, et al. Neutrophil to lymphocyte ratio and risk of a first episode of stroke in patients with atrial fibrillation: a cohort study[J]. J Thromb Haemost, 2015, 13(11):1971-1979.
[30] Gungor B, Ozcan KS, Erdinler I, et al. Elevated levels of RDW is associated with non-valvular atrial fibrillation[J]. J Thromb Thrombolysis, 2014, 37(4):404-410.
[31] Zhao JP, Liu T, Korantzopoulos P, et al. Red blood cell distribution width and left atrial thrombus or spontaneous echo contrast in patients with non-valvular atrial fibrillation[J]. Int J Cardiol, 2015, 180:63-65.
[32] Kurt M, Tanboga IH, Buyukkaya E, et al. Relation of red cell distribution width with CHA2DS2-VASc score in patients with nonvalvular atrial fibrillation[J]. Clin Appl Thromb Hemost, 2014, 20(7):687-692.
[33] Masawa N, Yoshida Y, Yamada T, et al. Diagnosis of cardiac thrombosis in patients with atrial fibrillation in the absence of macroscopically visible thrombi[J]. Virchows Arch A Pathol Anat Histopathol, 1993, 422(1):67-71.
[34] Diao SL, Xu HP, Zhang B, et al. Associations of MMP-2, BAX, and Bcl-2 mRNA and protein expressions with development of atrial fibrillation[J]. Med Sci Monit, 2016, 22:1497-1507.
[35] Wang P, Cheng M, Wang P, et al. SNP rs2243828 in MPO associated with myeloperoxidase level and atrial fibrillation risk in Chinese Han population[J]. J Cell Mol Med, 2020, 24(17):10263-10266.
[36] Ramacciotti E, Hawley AE, Farris DM, et al. Leukocyte-and platelet-derived microparticles correlate with thrombus weight and tissue factor activity in an experimental mouse model of venous thrombosis[J]. Thromb Haemost, 2009, 101(4):748- 754.
[37] Mallat Z, Hugel B, Ohan J, et al. Shed membrane microparticles with procoagulant potential in human atherosclerotic plaques: a role for apoptosis in plaque thrombogenicity[J]. Circulation, 1999, 99(3):348-353.
[38] Simak J, Gelderman MP, Yu H, et al. Circulating endothelial microparticles in acute ischemic stroke: a link to severity, lesion volume and outcome[J]. J Thromb Haemost, 2006, 4(6):1296-1302.
[39] Wang L, Bi Y, Yu M, et al. Phosphatidylserine-exposing blood cells and microparticles induce procoagulant activity in nonvalvular atrial fibrillation[J]. Int J Cardiol, 2018, 258:138-143.
[40] Siwaponanan P, Keawvichit R, Udompunturak S, et al. Altered profile of circulating microparticles in nonvalvular atrial fibrillation[J]. Clin Cardiol, 2019, 42(4):425-431.
[41] Liles J, Liles J, Wanderling C, et al. Increased level of thrombotic biomarkers in patients with atrial fibrillation despite traditional and new anticoagulant therapy[J]. Clin Appl Thromb Hemost, 2016, 22(8):743-748.
[42] Pourtau L, Sellal JM, Lacroix R, et al. Platelet function and microparticle levels in atrial fibrillation: changes during the acute episode[J]. Int J Cardiol, 2017, 243:216-222.

备注/Memo

备注/Memo:
通信作者:谢玉才, E-mail:drxieyucai@163.com
更新日期/Last Update: 2022-02-10