索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]邓聪颖,曹海涛.环状RNA,在心血管疾病中的发病机制及临床应用[J].国际心血管病杂志,2022,01:21-24.
点击复制

环状RNA,在心血管疾病中的发病机制及临床应用(PDF)

《国际心血管病杂志》[ISSN:1006-6977/CN:61-1281/TN]

期数:
2022年01期
页码:
21-24
栏目:
综述
出版日期:
2022-02-10

文章信息/Info

Title:
-
作者:
邓聪颖曹海涛
作者单位:213000 南京医科大学附属常州市第二人民医院心血管 内科
Author(s):
-
关键词:
环状RNA 心血管疾病发病机制临床应用
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-6583.2022.01.006
文献标识码:
-
摘要:
环状RNA(circRNA)在细胞中广泛存在且稳定表达,可作为重要的调控元件 充当微小RNA 和RNA 结合蛋白的海绵,参与调控转录、翻译、剪切等过程,影响心脏炎性 反应信号通路、血管平滑肌细胞功能、心肌细胞肥厚与凋亡、脂质代谢等过程。该文介绍 了circRNA 心血管疾病早期诊断、治疗靶点、风险分层的基本特点。
Abstract:
-

参考文献/References

[1] Wang Y, Liu B. Circular RNA in diseased heart[J]. Cells, 2020, 9(5):1240.
[2] Zang J, Lu D, Xu A. The interaction of circRNAs and RNA binding proteins: an important part of circRNA maintenance and function[J]. J Neurosci Res, 2020, 98(1):87-97.
[3] Zhu L, Li N, Sun L, et al. Non-coding RNAs: the key detectors and regulators in cardiovascular disease[J]. Genomics, 2021, 113(1 Pt 2):1233-1246.
[4] Jiang C, Zeng X, Shan R, et al. The emerging picture of the roles of circRNA-CDR1as in cancer[J]. Front Cell Dev Biol, 2020, 8:590478.
[5] Du WW, Yang W, Chen Y, et al. Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses[J]. Eur Heart J, 2017, 38(18):1402-1412.
[6] Yang Q, Li F, He AT, et al. Circular RNAs: expression, localization, and therapeutic potentials[J]. Mol Ther, 2021, 29(5):1683-1702.
[7] Kong P, Yu Y, Wang L, et al. circ-Sirt1 controls NF-kappaB activation via sequence-specific interaction and enhancement of SIRT1 expression by binding to miR-132/212 in vascular smooth muscle cells[J]. Nucleic Acids Res. 2019, 47(7): 3580- 3593.
[8] Huang HS, Huang XY, Yu HZ, et al. Circular RNA circ- RELL1 regulates inflammatory response by miR-6873-3p/ MyD88/NF-κB axis in endothelial cells[J]. Biochem Biophys Res Commun, 2020, 525(2):512-519.
[9] Cheng J, Liu Q, Hu N, et al. Downregulation of hsa_ ci rc_0068087 amel iorates TLR4/NF-κB/NLRP3 inflammasome-mediated inflammation and endothelial cell dysfunction in high glucose conditioned by sponging miR- 197[J]. Gene, 2019, 709:1-7.
[10] He X, Bao X, Tao Z, et al. The microarray identification circular RNA hsa_circ_0105015 up-regulated involving inflammation pathway in essential hypertension[J]. J Clin Lab Anal. 2021, 35(2): e23603.
[11] Hall IF, Climent M, Quintavalle M, et al. Circ_Lrp6, a circular RNA enriched in vascular smooth muscle cells, acts as a sponge regulating miRNA-145 function[J]. Circ Res, 2019, 124(4):498-510.
[12] Chen J, Cui L, Yuan J, et al. Circular RNA WDR77 target FGF-2 to regulate vascular smooth muscle cells proliferation and migration by sponging miR-124[J]. Biochem Biophys Res Commun, 2017 , 494(1-2):126-132.
[13] Fasolo F, Di Gregoli K, Maegdefessel L, et al. Non-coding RNAs in cardiovascular cell biology and atherosclerosis[J]. Cardiovasc Res, 2019, 115(12):1732-1756.
[14] Wang K, Long B, Liu F, et al. A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223[J]. Eur Heart J, 2016, 37(33):2602-2611.
[15] Sun J, Zhang Z, Yang S. Circ_RUSC2 upregulates the expression of miR-661 target gene SYK and regulates the function of vascular smooth muscle cells[J]. Biochem Cell Biol, 2019, 97(6):709-714.
[16] Tan WL, Lim BT, Anene-Nzelu CG, et al. A landscape of circular RNA expression in the human heart[J]. Cardiovasc Res, 2017, 113(3):298-309.
[17] Lei W, Feng T, Fang X, et al. Signature of circular RNAs in human induced pluripotent stem cells and derived cardiomyocytes[J]. Stem Cell Res Ther, 2018, 9 (1):56.
[18] Fang X, Cai Z, Wang H, et al. Loss of cardiac ferritin H facilitates cardiomyopathy via Slc7a11-mediated ferroptosis[J]. Circ Res, 2020, 127(4):486-501.
[19] Hu X, Ma R, Cao J, et al. CircSAMD4A aggravates H/R-induced cardiomyocyte apoptosis and inflammatory response by sponging miR-138-5p[J]. J Cell Mol Med, 2020 Nov 21. [Epub ahead of print].
[20] Wang L, Zheng Z, Feng X, et al. circRNA/lncRNA-miRNAmRNA network in oxidized, low-density, lipoprotein-induced foam cells[J]. DNA Cell Biol, 2019, 38(12):1499-1511.
[21] Liu Y, Liu H, Li Y, et al. Circular RNA SAMD4A controls adipogenesis in obesity through the miR-138-5p/EZH2 axis[J]. Theranostics, 2020, 10(10):4705-4719.
[22] Yu G, Yang Z, Peng T, et al. Circular RNAs: rising stars in lipid metabolism and lipid disorders[J]. J Cell Physiol. 2021, 236(7):4797-4806.
[23] Zhao Z, Li X, Gao C, et al. Peripheral blood circular RNA hsa_circ_0124644 can be used as a diagnostic biomarker of coronary artery disease[J]. Sci Rep, 2017, 7:39918.
[24] Vilades D, Martínez-Camblor P, Ferrero-Gregori A, et al. Plasma circular RNA hsa_circ_0001445 and coronary artery disease: Performance as a biomarker[J]. FASEB J, 2020, 34(3):4403-4414.
[25] Sun Y, Chen R, Lin S, et al. Association of circular RNAs and environmental risk factors with coronary heart disease[J]. BMC Cardiovasc Disord, 2019, 19(1):223.
[26] Sun C, Ni M, Song B, et al. Circulating circular RNAs: novel biomarkers for heart failure[J]. Front Pharmacol, 2020, 11:560537.
[27] Bazan HA, Hatfield SA, Brug A, et al. Carotid plaque rupture is accompanied by an increase in the ratio of serum circR-284 to miR-221 levels[J]. Circ Cardiovasc Genet, 2017, 10(4):e001720.
[28] Wu N, Jin L, Cai J. Profiling and bioinformatics analyses reveal differential circular RNA expression in hypertensive patients[J]. Clin Exp Hypertens, 2017, 39(5):454-459.
[29] Zheng S, Gu T, Bao X, et al. Circular RNA hsa_circ_0014243 may serve as a diagnostic biomarker for essential hypertension[J]. Exp Ther Med, 2019, 17(3):1728-1736.
[30] Wu J, Li J, Liu H, et al. Circulating plasma circular RNAs as novel diagnostic biomarkers for congenital heart disease in children[J]. J Clin Lab Anal, 2019, 33(9):e22998.
[31] Sonnenschein K, Wilczek AL, de Gonzalo-Calvo D, et al. Serum circular RNAs act as blood-based biomarkers for hypertrophic obstructive cardiomyopathy[J]. Sci Rep, 2019, 9(1):20350.
[32] Wang K, Gan TY, Li N, et al. Circular RNA mediates cardiomyocyte death via miRNA-dependent upregulation of MTP18 expression[J]. Cell Death Differ, 2017, 24(6):1111- 1120.
[33] Garikipati VNS, Verma SK, Cheng Z, et al. Circular RNA circFndc3b modulates cardiac repair after myocardial infarction via FUS/VEGF-A axis[J]. Nat Commun, 2019, 10(1):4317.
[34] Lei D, Wang Y, Zhang L, et al. Circ_0010729 regulates hypoxia-induced cardiomyocyte injuries by activating TRAF5 via sponging miR-27a-3p[J]. Life Sci, 2020, 262:118511.
[35] Deng Y, Wang J, Xie G, et al. Circ-HIPK3 strengthens the effects of adrenaline in heart failure by miR-17-3p - ADCY6 axis[J]. Int J Biol Sci, 2019, 15(11):2484-2496.
[36] Salgado-Somoza A, Zhang L, Vausort M, et al. The circular RNA MICRA for risk stratification after myocardial infarction[J]. Int J Cardiol Heart Vasc, 2017, 17:33-36.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(8197021000);江苏省江苏省卫生 健康委员会(Z2018031)
通信作者:曹海涛, E-mail:caohaitao718@sina.com
更新日期/Last Update: 2022-02-10