索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]冯硕,张瑞岩.高密度脂蛋白胆固醇流出能力在冠状动脉粥样硬化性心脏病中的作用[J].国际心血管病杂志,2021,04:197-199,214.
点击复制

高密度脂蛋白胆固醇流出能力在冠状动脉粥样硬化性心脏病中的作用(PDF)

《国际心血管病杂志》[ISSN:1006-6977/CN:61-1281/TN]

期数:
2021年04期
页码:
197-199,214
栏目:
综述
出版日期:
2021-08-15

文章信息/Info

Title:
-
作者:
冯硕张瑞岩
200025 上海交通大学医学院附属瑞金医院心内科
Author(s):
-
关键词:
高密度脂蛋白 胆固醇流出能力 冠状动脉粥样硬化性心脏病
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-6583.2021.04.002
文献标识码:
-
摘要:
高密度脂蛋白是心血管保护因子,与冠状动脉粥样硬化性心脏病的发病和预后密切相关。高密度脂蛋白抗动脉粥样硬化的主要机制是介导胆固醇逆向转移,其逆向转移功能可能受糖代谢、炎性状态等多种因素影响,并成为潜在的脂代谢紊乱治疗及监测靶点。
Abstract:
-

参考文献/References

[1] Arnett DK, Blumenthal RS, Albert MA, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines[J]. Circulation, 2019, 140(11):e596-e646.
[2] Authors/Task Force M, Guidelines ESCCfP, Societies ESCNC. 2019 ESC/EAS guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk[J]. Atherosclerosis, 2019, 290:140-205.
[3] Group HTC, Landray MJ, Haynes R, et al. Effects of extended-release niacin with laropiprant in high-risk patients[J]. N Engl J Med, 2014, 371(3):203-212.
[4] Keene D, Price C, Shun-Shin MJ, et al. Effect on cardiovascular risk of high density lipoprotein targeted drug treatments niacin, fibrates, and CETP inhibitors: meta-analysis of randomised controlled trials including 117,411 patients[J]. BMJ, 2014, 349:g4379.
[5] Farbstein D, Levy AP. HDL dysfunction in diabetes: causes and possible treatments[J]. Expert Rev Cardiovasc Ther, 2012, 10(3):353-361.
[6] Anastasius M, Kockx M, Jessup W, et al. Cholesterol efflux capacity: an introduction for clinicians [J]. Am Heart J, 2016, 180:54-63.
[7] Sankaranarayanan S, Kellner-Weibel G, de la Llera-Moya M, et al. A sensitive assay for ABCA1-mediated cholesterol efflux using BODIPY-cholesterol [J]. J Lipid Res, 2011, 52(12):2332-2340.
[8] Khera AV, Cuchel M, de la Llera-Moya M, et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis [J]. N Engl J Med, 2011, 364(2):127-135.
[9] Hunjadi M, Lamina C, Kahler P, et al. HDL cholesterol efflux capacity is inversely associated with subclinical cardiovascular risk markers in young adults: the cardiovascular risk in Young Finns study[J]. Sci Rep, 2020, 10(1):19223.
[10] Rohatgi A, Khera A, Berry JD, et al. HDL cholesterol efflux capacity and incident cardiovascular events[J]. N Engl J Med, 2014, 371(25):2383-2393.
[11] Saleheen D, Scott R, Javad S, et al. Association of HDL cholesterol efflux capacity with incident coronary heart disease events: a prospective case-control study[J]. Lancet Diabetes Endocrinol, 2015, 3(7):507-513.
[12] Ritsch A, Duerr A, Kahler P, et al. Cholesterol efflux capacity and cardiovascular disease: the Ludwigshafen Risk and Cardiovascular Health(LURIC)study[J]. Biomedicines, 2020, 8(11):524.
[13] Guerin M, Silvain J, Gall J, et al. Association of serum cholesterol efflux capacity with mortality in patients with ST-segment elevation myocardial infarction[J]. J Am Coll Cardiol, 2018, 72(25):3259-3269.
[14] Li XM, Tang WH, Mosior MK, et al. Paradoxical association of enhanced cholesterol efflux with increased incident cardiovascular risks[J]. Arterioscler Thromb Vasc Biol, 2013, 33(7):1696-1705.
[15] Salahuddin T, Natarajan B, Playford MP, et al. Cholesterol efflux capacity in humans with psoriasis is inversely related to non-calcified burden of coronary atherosclerosis[J]. Eur Heart J, 2015, 36(39):2662-2665.
[16] Badeau RM, Metso J, Wahala K, et al. Human macrophage cholesterol efflux potential is enhanced by HDL-associated 17beta-estradiol fatty acyl esters[J]. J Steroid Biochem Mol Biol, 2009, 116(1-2):44-49.
[17] Ding J, Reynolds LM, Zeller T, et al. Alterations of a cellular cholesterol metabolism network are a molecular feature of obesity-related type 2 diabetes and cardiovascular disease[J]. Diabetes, 2015, 64(10):3464-3474.
[18] Ronsein GE, Vaisar T. Inflammation, remodeling, and other factors affecting HDL cholesterol efflux[J]. Curr Opin Lipidol, 2017, 28(1):52-59.
[19] Talbot CPJ, Plat J, Ritsch A, et al. Determinants of cholesterol efflux capacity in humans[J]. Prog Lipid Res, 2018, 69: 21-32.
[20] Passarelli M, Tang C, McDonald TO, et al. Advanced glycation end product precursors impair ABCA1-dependent cholesterol removal from cells[J]. Diabetes, 2005, 54(7):2198-205.
[21] Femlak M, Gluba-Brzozka A, Cialkowska-Rysz A, et al. The role and function of HDL in patients with diabetes mellitus and the related cardiovascular risk[J]. Lipids Health Dis, 2017, 16(1):207.
[22] Sun JT, Shen Y, Lu AK, et al. Glycation of high-density lipoprotein in type 2 diabetes mellitus[J]. Chin Med J(Engl), 2013, 126(21):4162-4165.
[23] Kubota M, Nakanishi S, Hirano M, et al. Relationship between serum cholesterol efflux capacity and glucose intolerance in Japanese-Americans[J]. J Atheroscler Thromb, 2014, 21(10):1087-1097.
[24] Yassine HN, Belopolskaya A, Schall C, et al. Enhanced cholesterol efflux to HDL through the ABCA1 transporter in hypertriglyceridemia of type 2 diabetes[J]. Metabolism, 2014, 63(5):727-734.
[25] Nissen SE, Tardif JC, Nicholls SJ, et al. Effect of torcetrapib on the progression of coronary atherosclerosis[J]. N Engl J Med, 2007, 356(13):1304-1316.
[26] Salahuddin T, Kittelson J, Tardif JC, et al. Association of high-density lipoprotein particle concentration with cardiovascular risk following acute coronary syndrome: a case-cohort analysis of the dal-outcomes trial[J]. Am Heart J, 2020, 221:60-66.
[27] Tosheska Trajkovska K, Topuzovska S. High-density lipoprotein metabolism and reverse cholesterol transport: strategies for raising HDL cholesterol[J]. Anatol J Cardiol, 2017, 18(2):149-154.
[28] D'Andrea E, Hey SP, Ramirez CL, et al. Assessment of the role of niacin in managing cardiovascular disease outcomes: a systematic review and meta-analysis[J]. JAMA Netw Open, 2019, 2(4):e192224.
[29] Ozasa H, Ayaori M, Iizuka M, et al. Pioglitazone enhances cholesterol efflux from macrophages by increasing ABCA1/ABCG1 expressions via PPARgamma/LXRalpha pathway: findings from in vitro and ex vivo studies[J]. Atherosclerosis, 2011, 219(1):141-150.
[30] Lebovitz HE. Thiazolidinediones: the forgotten diabetes medications[J]. Curr Diab Rep, 2019, 19(12):151.
[31] Franceschini G, Calabresi L, Colombo C, et al. Effects of fenofibrate and simvastatin on HDL-related biomarkers in low-HDL patients [J]. Atherosclerosis, 2007, 195(2):385-391.
[32] Franceschini G, Favari E, Calabresi L, et al. Differential effects of fenofibrate and extended-release niacin on high-density lipoprotein particle size distribution and cholesterol efflux capacity in dyslipidemic patients[J]. J Clin Lipidol, 2013, 7(5):414-422.

备注/Memo

备注/Memo:
通信作者:张瑞岩, E-mail:zhangruiyan@263.net
更新日期/Last Update: 2021-08-15