索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]石慧丽,钟光珍.心房颤动动物模型的制备及应用进展[J].国际心血管病杂志,2017,03:146-149.
点击复制

心房颤动动物模型的制备及应用进展(PDF)

《国际心血管病杂志》[ISSN:1006-6977/CN:61-1281/TN]

期数:
2017年03期
页码:
146-149
栏目:
综述
出版日期:
2017-05-30

文章信息/Info

Title:
-
作者:
石慧丽钟光珍
100020 首都医科大学附属北京朝阳医院心脏中心
Author(s):
-
关键词:
心房颤动 动物模型 制备方法 快起速搏
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-6583.2017.03.006
文献标识码:
-
摘要:
心房颤动(房颤)是最常见的心律失常,该文介绍常用房颤模型的建立方法,其中快速起搏法最常用,实验动物以犬和兔为主。房颤的疾病模型和基因模型也在逐渐丰富。
Abstract:
-

参考文献/References

[1] Kato T, Iwasaki Y K, Duker G, et al. Inefficacy of a highly selective T-Type calcium channel blocker in preventing atrial fibrillation related remodeling[J].J Cardiovasc Electrophysiol, 2014, 25(5):531-536.
[2] Wang X, Wang R, Liu G, et al. The β3 adrenergic receptor agonist BRL37344 exacerbates atrial structural remodeling through iNOS uncoupling in canine models of atrial fibrillation[J]. Cell Physiol Biochem, 2016; 38(2):514-530.
[3] Niwano S, Kojima J, Fukaya H, et al. Arrhythmogenic difference between the left and right atria during rapid atrial activation in a canine model of atrial fibrillation[J]. Circ J, 2007, 71(10):1629-1635.
[4] 陈雯雯, 罗章源, 陈颖敏. 心房颤动动物模型建立的方法学[J]. 中国心脏起搏与心电生理杂志, 2010, 24(5):390-393.
[5] Baczko I, Liknes D, Yang W, et al. Characterization of a novel multifunctional resveratrol derivative for the treatment of atrial fibrillation[J]. Br J Pharmacol, 2014, 171(1):92-106.
[6] Yu Y, Liu L, Jiang JY, et al. Parasympathetic and substance P-immunoreactive nerve denervation in atrial fibrillation models[J]. Cardiovasc Pathol, 2012, 21(1):39-45.
[7] Lu Y, Sun J, Zhou X, et al. Atrial fibrillation electrical remodelling via ablation of the epicardial neural networks and suprathreshold stimulation of vagosympathetic nerve[J]. Med Sci Monit, 2015, 21: 82-89.
[8] Zhou Q, Zhang L, Wang K, et al. Effect of interconnection between cervical vagus trunk, epicardial fat pad on sinus node function, and atrial fibrillation[J]. Pacing Clin Electrophysiol, 2014, 37(3):356-363.
[9] Lu Y, Sun J, Zhou X, et al. Effect of low-level vagus nerve stimulation on cardiac remodeling in a rapid atrial pacing-induced canine model of atrial fibrillation[J]. J Cardiovasc Pharmacol, 2016, 67(3):218-224.
[10] Jia X, Zheng S, Xie X, et al. MicroRNA-1 accelerates the shortening of atrial effective refractory period by regulating KCNE1 and KCNB2 expression: an atrial tachypacing rabbit model[J]. PloS One, 2013, 8(12):e85639.
[11] He X, Zhang K, Gao X, et al. Rapid atrial pacing induces myocardial fibrosis by down-regulating Smad7 via microRNA-21 in rabbit[J]. Heart Vessels, 2016, 31(10):1696-1708.
[12] Liu Y, Geng J, Li Y, et al. β3-adrenoceptor mediates metabolic protein remodeling in a rabbit model of tachypacing-induced atrial fibrillation[J]. Cell Physiol Biochem, 2013, 32(6):1631-1642.
[13] Zhang DX, Ren K, Guan Y, et al. Protective effects of apocynin on atrial electrical remodeling and oxidative stress in a rabbit rapid atrial pacing model[J]. Chin J Physiol, 2014, 57(2):76-82.
[14] 邓贵智, 胡建新. 兔急性房颤时心房肌钙通道α1C、β1及钾通道Ikr的表达和药物干预[J]. 中国医药科学, 2013, 3(5):30-33.
[15] Angel N, Li L, Macleod RS, et al. Diverse fibrosis architecture and premature stimulation facilitate initiation of reentrant activity following chronic atrial fibrillation[J]. J Cardiovas Electrophysiol, 2015, 26(12):1352-1360.
[16] Dosdall DJ, Ranjan R, Higuchi K, et al. Chronic atrial fibrillation causes left ventricular dysfunction in dogs but not goats: experience with dogs, goats, and pigs[J]. Am J Physiol Heart Circ Physiol, 2013, 305(5):H725-H731.
[17] Lenaerts I, Holemans P, Pokreisz P, et al. Nitric oxide delays atrial tachycardia-induced electrical remodelling in a sheep model[J]. Europace, 2011, 13(5):747-754.
[18] Lugenbiel P, Wenz F, Govorov K, et al. Atrial fibrillation complicated by heart failure induces distinct remodeling of calcium cycling proteins[J]. PloS One, 2015, 10(3):e0116395.
[19] Kazui T, Henn MC, Watanabe Y, et al. The impact of 6 weeks of atrial fibrillation on left atrial and ventricular structure and function[J]. J Thorac Cardiovasc Surg, 2015, 150(6):1602-1608.
[20] Guo X, Yuan S, Liu Z, et al. Oxidation and CaMKII-mediated sarcoplasmic reticulum Ca2+ leak triggers atrial fibrillation in aging[J]. J Cardiovasc Electrophysiol, 2014, 25(6):645-652.
[21] Aguilar M, Qi XY, Huang H, et al. Fibroblast electrical remodeling in heart failure and potential effects on atrial fibrillation[J]. Biophys J, 2014, 107(10):2444-2455.
[22] 祖克拉·吐尔洪, 周祁娜, 王红丽, 等. 犬急性心肌梗死后新发心房颤动与交感神经重构的关系[J].中华心血管病杂志, 2015, 43(11):975-981.
[23] De Jong AM, Van Gelder IC, Vreeswijk-Baudoin I, et al. Atrial remodeling is directly related to end-diastolic left ventricular pressure in a mouse model of ventricular pressure overload[J]. PloS One, 2013, 8(9):e72651.
[24] Kondo H, Takahashi N, Gotoh K, et al. Splenectomy exacerbates atrial inflammatory fibrosis and vulnerability to atrial fibrillation induced by pressure overload in rats: Possible role of spleen-derived interleukin-10[J]. Heart Rhythm, 2016, 13(1):241-250.
[25] Kuklik P, Lau DH, Ganesan AN, et al. High-density mapping of atrial fibrillation in a chronic substrate: evidence for distinct modes of repetitive wavefront propagation[J]. Int J Cardiol, 2015, 199:407-414.
[26] Linz D, Hohl M, Nickel A, et al. Effect of renal denervation on neurohumoral activation triggering atrial fibrillation in obstructive sleep apnea[J]. Hypertension, 2013, 62(4):767-774.
[27] Zhang Y, Wang YT, Shan ZL, et al. Role of inflammation in the initiation and maintenance of atrial fibrillation and the protective effect of atorvastatin in a goat model of aseptic pericarditis[J]. Mol Med Rep, 2015, 11(4):2615-2623.
[28] Yu G, Yu Y, Li YN, et al. Effect of periodontitis on susceptibility to atrial fibrillation in an animal model[J]. J Electrocardiol, 2010, 43(4):359-366.
[29] 陈春林, 巩甜甜, 汤依群, 等. SD 大鼠房颤模型的建立[J]. 实验动物科学, 2009, 26(3):1-4.
[30] 熊 斌, 景金金, 苏 立. 螺内酯对高甲状腺素诱导的兔心房颤动和心房重构的影响[J]. 中国病理生理杂志, 2015, 31(8):1376-1383.
[31] Zhang Y, Dedkov EI, Teplitsky D, et al. Both hypothyroidism and hyperthyroidism increase atrial fibrillation inducibility in rats[J]. Circ Arrhythm Electrophysiol, 2013, 6(5):952-959.
[32] Xie W, Santulli G, Reiken SR, et al. Mitochondrial oxidative stress promotes atrial fibrillation[J]. Sci Rep, 2015, 14,5:11427.
[33] Li N, Chiang DY, Wang S, et al. Ryanodine receptor-mediated calcium leak drives progressive development of an atrial fibrillation substrate in a transgenic mouse model[J]. Circulation, 2014, 129(12):1276-1285.
[34] Li N, Wang T, Wang W, et al. Inhibition of CaMKII phosphorylation of RyR2 prevents induction of atrial fibrillation in FKBP12.6 knockout mice[J]. Cir Res, 2012, 110(3):465-470.
[35] Ozcan C, Battaglia E, Young R, et al. LKB1 knockout mouse develops spontaneous atrial fibrillation and provides mechanistic insights into human disease process[J]. J Am Heart Assoc, 2015, 4(3):e001733.
[36] Bernardo BC, Sapra G, Patterson NL, et al. Long-term overexpression of HSP70 does not protect against cardiac dysfunction and adverse remodeling in a MURC transgenic mouse model with chronic heart failure and atrial fibrillation[J].PLoS One, 2015, 10(12):e0145173.
[37] Trayanova NA. Mathematical approaches to understanding and imaging atrial fibrillation significance for mechanisms and management[J]. Cir Res, 2014, 114(9):1516-1531.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(81300148); 北京市卫生系统高层次卫生技术人才队伍建设-学科骨干(2011)
通信作者:钟光珍,Email:zhongguangzhen@hotmall.com
更新日期/Last Update: 2017-05-30