索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]张佳玲,付炜,殷猛.组织工程血管的体内实验动物模型[J].国际心血管病杂志,2016,02:102-106.
点击复制

组织工程血管的体内实验动物模型(PDF)

《国际心血管病杂志》[ISSN:1006-6977/CN:61-1281/TN]

期数:
2016年02期
页码:
102-106
栏目:
综述
出版日期:
2016-03-20

文章信息/Info

Title:
-
作者:
张佳玲付炜殷猛
200127,上海交通大学医学院附属上海儿童医学中心心胸外科(张佳玲,殷 猛); 儿科转化医学研究所(付 炜)
Author(s):
-
关键词:
组织工程血管体内实验动物模型
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-6583.2016.02.012
文献标识码:
-
摘要:
在组织工程血管向临床转化的过程中,进行体内实验是关键,选择合适的动物模型尤为重要。筛选动物模型通常以血管直径的匹配度为主要参考因素,此外还受物种差异、移植部位、促凝性等多种因素的影响。该文介绍近几年血管移植动物模型在组织工程血管领域中的应用。
Abstract:
-

参考文献/References

[1] Benrashid E, McCoy CC, Youngwirth LM,et al. Tissue engineered vascular grafts: Origins, development, and current strategies for clinical application [J]. Methods,2015, doi: 10.1016/j.ymeth.2015.07.014
[2] Thomas LV, Lekshmi V, Nair PD. Tissue engineered vascular grafts—preclinical aspects [J]. Int J Cardiol, 2013,167(4):1091-1100.
[3] Swartz DD, Andreadis ST. Animal models for vascular tissue-engineering [J]. Curr Opin Biotechnol,2013,24(5):916-925.
[4] Byrom MJ, Bannon PG, White GH, et al. Animal models for the assessment of novel vascular conduits [J]. J Vasc Surg, 2010,52(1):176-195.
[5] Zheng W, Wang Z, Song L, et al. Endothelialization and patency of RGD-functionalized vascular grafts in a rabbit carotid artery model [J]. Biomaterials,2012,33(10):2880-2891.
[6] Dong QS, Shang HT, Wu W, et al. Prefabrication of axial vascularized tissue engineering coral bone by an arteriovenous loop: a better model [J]. Mater Sci Eng C Mater Biol Appl, 2012,32(6):1536-1541.
[7] Dong QS, Lin C, Shang HT, et al. Modified approach to construct a vascularized coral bone in rabbit using an arteriovenous loop [J]. J Reconstr Microsurg,2010,26(2):95-102.
[8] Wong AH, Waugh JM, Amabile PG, et al. In vivo vascular engineering: directed migration of smooth muscle cells to limit neointima [J]. Tissue Eng,2002,8(2):189-199.
[9] Zhu B, Bailey SR, Elliott J, et al. Development of a total atherosclerotic occlusion with cell-mediated calcium deposits in a rabbit femoral artery using tissue-engineering scaffolds [J]. J Tissue Eng Regen Med, 2012,6(3):193-204.
[10] Zeng W, Yuan W, Li L, et al. The promotion of endothelial progenitor cells recruitment by nerve growth factors in tissue-engineered blood vessels [J],Biomaterials,2010,31(7):1636-1645.
[11] Yu J, Wang A, Tang Z, et al. The effect of stromal cell-derived factor-1alpha/heparin coating of biodegradable vascular grafts on the recruitment of both endothelial and smooth muscle progenitor cells for accelerated regeneration[J],Biomaterials,2012,33(32):8062-8074.
[12] Wu Y, Li L, Chen W, et al. Maintaining moderate platelet aggregation and improving metabolism of endothelial progenitor cells increase the patency rate of tissue-engineered blood vessels [J]. Tissue Eng Part A, 2015,21(13-14):2001-2012.
[13] Nieponice A, Soletti L, Guan J, et al. In vivo assessment of a tissue-engineered vascular graft combining a biodegradable elastomeric scaffold and muscle-derived stem cells in a rat model [J].Tissue Eng Part A, 2010,16(4):1215-1223.
[14] Roh JD, Sawh-Martinez R, Brennan MP, et al. Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling [J].Proc Natl Acad Sci U S A, 2010,107(10):4669-4674.
[15] Tara S, Kurobe H, Maxfield MW, et al. Evaluation of remodeling process in small-diameter cell-free tissue-engineered arterial graft [J]. J Vasc Surg,2015,62(3):734-743
[16] Nelson GN, Mirensky T, Brennan MP, et al. Functional small-diameter human tissue-engineered arterial grafts in an immunodeficient mouse model: preliminary findings [J]. Arch Surg, 2008,143(5):488-494.
[17] Hjortnaes J, Gottlieb D, Figueiredo JL, et al. Intravital molecular imaging of small-diameter tissue-engineered vascular grafts in mice: a feasibility study [J].Tissue Eng Part C Methods, 2010,16(4):597-607.
[18] Dahl SL, Kypson AP, Lawson JH, et al. Readily available tissue-engineered vascular grafts [J]. Sci Transl Med, 2011,3(68):68-69.
[19] Ye L, Wu X, Duan HY, et al. The in vitro and in vivo biocompatibility evaluation of heparin-poly(epsilon-caprolactone)conjugate for vascular tissue engineering scaffolds [J]. J Biomed Mater Res A, 2012,100(12):3251-3258.
[20] Wang S, Mo XM, Jiang BJ, et al. Fabrication of small-diameter vascular scaffolds by heparin-bonded P(LLA-CL)composite nanofibers to improve graft patency [J]. Int J Nanomedicine, 2013,8(1):2131-2139.
[21] Zhou M, Qiao W, Liu Z, et al. Development and in vivo evaluation of small-diameter vascular grafts engineered by outgrowth endothelial cells and electrospun chitosan/poly(epsilon-caprolactone)nanofibrous scaffolds [J]. Tissue Eng Part A, 2014,20(1-2):79-91.
[22] Matsumura G, Isayama N, Matsuda S, et al. Long-term results of cell-free biodegradable scaffolds for in situ tissue engineering of pulmonary artery in a canine model [J]. Biomaterials,2013,34(27):6422-6428.
[23] Isayama N, Matsumura G, Sato H, et al. Histological maturation of vascular smooth muscle cells in in situ tissue-engineered vasculature [J]. Biomaterials,2014,35(11):3589-3595.
[24] Niklason LE, Gao J, Abbott WM, et al. Functional arteries grown in vitro [J]. Science, 1999,284(5413):489-493.
[25] Lu S, Zhang P, Sun X, et al. Synthetic ePTFE grafts coated with an anti-CD133 antibody-functionalized heparin/collagen multilayer with rapid in vivo endothelialization properties [J]. ACS Appl Mater Interfaces,2013,5(15):7360-7369.
[26] Quint C, Kondo Y, Manson RJ, et al. Decellularized tissue-engineered blood vessel as an arterial conduit [J]. Proc Natl Acad Sci U S A, 2011,108(22):9214-9219.
[27] Koch S, Flanagan TC, Sachweh JS, et al. Fibrin-polylactide-based tissue-engineered vascular graft in the arterial circulation [J]. Biomaterials,2010,31(17):4731-4739.
[28] Scherner M, Reutter S, Klemm D, et al. In vivo application of tissue-engineered blood vessels of bacterial cellulose as small arterial substitutes: proof of concept? [J]. J Surg Res, 2014,189(2):340-347.
[29] Mertens ME, Koch S, Schuster P, et al. USPIO-labeled textile materials for non-invasive MR imaging of tissue-engineered vascular grafts [J]. Biomaterials,2015,39(1):155-163.
[30] Clowes AW, Kirkman TR, Clowes MM. Mechanisms of arterial graft failure. II. Chronic endothelial and smooth muscle cell proliferation in healing polytetrafluoroethylene prostheses [J]. J Vasc Sur,1986,3(6):877-884.
[31] Jordan SW, Haller CA, Sallach RE, et al. The effect of a recombinant elastin-mimetic coating of an ePTFE prosthesis on acute thrombogenicity in a baboon arteriovenous shunt [J]. Biomaterials, 2007,28(6):1191-1197.
[32] Prichard HL, Manson RJ, DiBernardo L, et al. An early study on the mechanisms that allow tissue-engineered vascular grafts to resist intimal hyperplasia [J]. J Cardiovasc Transl Res, 2011,4(5):674-682.
[33] Torche D, Guidoin R, Boyer D, et al. An arterial prosthesis from Argentina: the Barone Microvelour arterial graft [J]. J Biomater Appl,1989,3(3):427-453.
[34] Guidoin R, Marois Y, Zhang Z, et al. The benefits of fluoropassivation of polyester arterial prostheses as observed in a canine model [J]. ASAIO J, 1994,40(3):M870-879.
[35] Marois Y, Chakfe N, Guidoin R, et al. An albumin-coated polyester arterial graft: in vivo assessment of biocompatibility and healing characteristics [J]. Biomaterials,1996,17(1):3-14.
[36] Matsumura G, Nitta N, Matsuda S, et al. Long-term results of cell-free biodegradable scaffolds for in situ tissue-engineering vasculature: in a canine inferior vena cava model [J]. PLoS One,2012,7(4):e35760.
[37] Suzuki S, Iwamoto M, Saito Y, et al. Il2rg gene-targeted severe combined immunodeficiency pigs [J]. Cell Stem Cell, 2012,10(6):753-758.
[38] Song J, Zhong J, Guo X, et al. Generation of RAG 1- and 2-deficient rabbits by embryo microinjection of TALENs [J]. Cell Res,2013,23(8):1059-1062.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(81271726),上海交通大学医工交叉基金(YG2012MS35) 作者单位:200127,上海交通大学医学院附属上海儿童医学中心心胸外科(张佳玲,殷 猛); 儿科转化医学研究所(付 炜) 通信作者:殷 猛, Email: yinmengmdphd@163.com
更新日期/Last Update: 2016-03-20