索引超出了数组界限。
[ 1 ] Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75(5):843-854.
[ 2 ] An JY, John L, Melanie LL, et al. miRDeep: an integrated application tool for miRNA identification from RNA sequencing data[J]. Nucleic Acids Res, 2013, 41(2):727-737.
[ 3 ] Macfarlane LA, Murphy PR. MicroRNA: biogenesis, function and role in cancer[J]. Curr Genomics, 2010, 11(7):537-561.
[ 4 ] Chen JF, Mandel EM, Thomson JM, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation[J]. Nat Genet, 2006, 38(2):228-233.
[ 5 ] Tsoporis JN, Fazio A, Ioannis KR, et al. Increased right atrial appendage apoptosis is associated with differential regulation of candidate MicroRNAs 1 and 133A in patients who developed atrial fibrillation after cardiac surgery[J]. J Mol Cell Cardiol, 2018, 121:25-32.
[ 6 ] Liu T, Zhong S, Rao F, et al. Catheter ablation restores decreased plasma miR-409-3p and miR-432 in atrial fibrillation patients[J]. Europace, 2016, 18(1):92-99.
[ 7 ] Jia X, Zheng S, Xie X, et al. MicroRNA-1 accelerates the shortening of atrial effective refractory period by regulating KCNE1 and KCNB2 expression: an atrial tachypacing rabbit model[J]. PLoS One, 2013, 8(12):e85639.
[ 8 ] Zhai C, Tang G, Peng L, et al. Inhibition of microRNA-1 attenuates hypoxia/re-oxygenation-induced apoptosis of cardiomyocytes by directly targeting Bcl-2 but not GADD45Beta[J]. Am J Transl Res, 2015, 7(10):1952-1962.
[ 9 ] Lu Y, Zhang Y, Wang N, et al. MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation[J]. Circulation, 2010, 122(23):2378-2387.
[10] Kim GH. MicroRNA regulation of cardiac conduction and arrhythmias[J]. Transl Res, 2013, 161(5):381-392.
[11] Ling TY, Wang XL, Chai Q, et al. Regulation of the SK3 Channel by microRNA-499—potential role in atrial fibrillation[J]. Heart Rhythm, 2013, 10(7):1001-1009.
[12] Ling TY, Wang XL, Chai Q, et al. Regulation of cardiac CACNB2 by microRNA-499: potential role in atrial fibrillation[J]. BBA Clin, 2017, 7:78-84.
[13] Adam O, L?hfelm B, Thum T, et al. Role of miR-21 in the pathogenesis of atrial fibrosis[J]. Basic Res Cardiol, 2012, 107(5):278.
[14] Zhang K, Zhao L, Ma Z, et al. Doxycycline attenuates atrial remodeling by interfering with MicroRNA-21 and downstream phosphatase and tensin homolog(PTEN)/phosphoinositide 3-kinase(PI3K)signaling pathway[J]. Med Sci Monit, 2018, 24:5580-5587.
[15] Shan HL, Yong Z, Lu YJ, et al. Downregulation of miR-133 and miR-590 contributes to nicotine-induced atrial remodelling in canines[J]. Cardiovasc Res, 2009, 83(3):465-472.
[16] Li H, Li S, Yu B, et al. Expression of miR-133 and miR-30 in chronic atrial fibrillation in canines[J]. Mol Med Rep, 2012, 5(6):1457-1460.
[17] Kriegel AJ, Liu Y, Fang Y, et al. The miR-29 family: genomics, cell biology, and relevance to renal and cardiovascular injury[J]. Physiol Genomics, 2012, 44(4):237-244.
[18] Goren Y, Meiri E, Hogan C, et al. Relation of reduced expression of MiR-150 in platelets to atrial fibrillation in patients with chronic systolic heart failure[J]. Am J Cardiol, 2014, 113(6):976-981.
[19] Mcmanus DD, Tanriverdi K, Lin H, et al. Plasma microRNAs are associated with atrial fibrillation and change after catheter ablation(the miRhythm study)[J]. Heart Rhythm, 2015, 12(1):3-10.
[20] Galenko O, Jacobs V, Knight S, et al. The role of microRNAs in the development, regulation, and treatment of atrial fibrillation[J]. J Interv Card Electrophysiol, 2019, 55(3):297-305.
[21] Harling L, Lambert J, Ashrafian H, et al. Elevated serum microRNA 483-5p levels may predict patients at risk of post-operative atrial fibrillation[J]. Eur J Cardiothorac Surg, 2017, 51(1):73-78.
[22] Wang MJ, Sun LB, Wei D, et al. Ablation alleviates atrial fibrillation by regulating the signaling pathways of endothelial nitric oxide synthase/nitric oxide via miR-155-5p and miR-24-3p[J]. J Cell Biochem, 2019, 120(3):4451-4462.
[23] Rao ML. Time-dependent cervical vagus nerve stimulation and frequency-dependent right atrial pacing mediated inducibility of atrial fibrillation[J]. Anadolu Kardiyol Derg, 2018, 20(4):206-212.
[24] Morishima M, Iwata E, Nakada C, et al. Atrial fibrillation-mediated upregulation of miR-30d regulates myocardial electrical remodeling of the G-protein-gated K(+)channel, IK.ACh[J]. Circ J, 2016, 80(6):1346-1355.
[25] Zhang YJ, Zheng SH, Geng Y, et al. MicroRNA profiling of atrial fibrillation in canines: miR-206 modulates intrinsic cardiac autonomic nerve remodeling by regulating SOD1[J]. PLoS One, 2015, 10(3):e0122674.
[26] Wei JQ, Zhang YJ, Zhan L, et al. GCH1 attenuates cardiac autonomic nervous remodeling in canines with atrial-tachypacing via tetrahydrobiopterin pathway regulated by microRNA-206[J]. Pacing Clin Electrophysiol, 2018, 41(5):459-471.
[27] Harada M, Luo X, Murohara T, et al. MicroRNA regulation and cardiac Calcium signaling: role in cardiac disease and therapeutic potential[J]. Circ Res, 2014, 114(4):689-705.
[28] Chiang DY, Kongchan N, Beavers DL, et al. Loss of MicroRNA-106b-25 cluster promotes atrial fibrillation by enhancing ryanodine receptor type-2 expression and Calcium release[J]. Circ Arrhythm Electrophysiol, 2014, 7(6):1214-1222.
[29] Ca?ón S, Caballero R, Herraiz-Martínez A, et al. miR-208b upregulation interferes with calcium handling in HL-1 atrial myocytes: implications in human chronic atrial fibrillation[J]. J Mol Cell Cardiol, 2016, 99:162-173.
[29] Ca?ón S, Caballero R, Herraiz-Martínez A, et al. miR-208b upregulation interferes with calcium handling in HL-1 atrial myocytes: implications in human chronic atrial fibrillation[J]. J Mol Cell Cardiol, 2016, 99:162-173.
[30] D’alessandra Y, Devanna P, Limana F, et al. Circulating microRNAs are new and sensitive biomarkers of myocardial infarction[J]. Eur Heart J, 2010, 31(22):2765-2773.
[31] Feldman A, Moreira DAR, Gun C, et al. Analysis of circulating miR-1, miR-23a, and miR-26a in atrial fibrillation patients undergoing coronary bypass artery grafting surgery[J]. Ann Hum Genet, 2017, 81(3):99-105.