索引超出了数组界限。
[ 1 ] Nilsen TW, Graveley BR. Expansion of the eukaryotic proteome by alternative splicing[J]. Nature, 2010, 463(7280):457-463.
[ 2 ] Martínez-Campos E, Hernández-SanMiguel E, López-Sánchez C, et al. Alternative splicing variants of proinsulin mRNA and the effects of excess proinsulin on cardiac morphogenesis[J]. FEBS Letters, 2013, 587(14):2272-2277.
[ 3 ] Hu Z, Wang JW, Yu D, et al. Aberrant splicing promotes proteasomal degradation of L-type cav1.2 calcium channels by competitive binding for cavβ subunits in cardiac hypertrophy[J]. Sci Rep, 2016, 6(1):1-12.
[ 4 ] Giudice J, Xia Z, Wang ET, et al. Alternative splicing regulates vesicular trafficking genes in cardiomyocytes during postnatal heart development[J]. Nat Commun, 2014, 5(1):1-15.
[ 5 ] Wang H, Chen Y, Li X, et al. Genome-wide analysis of alternative splicing during human heart development[J]. Scientific Reports, 2016, 6(1):1-13.
[ 6 ] Ortiz-Sánchez P, Villalba-Orero M, López-Ola?eta M M, et al. Loss of SRSF3 in cardiomyocytes leads to decapping of contraction-related mRNAs and severe systolic dysfunction[J]. Circ Res, 2019, 125(2):170-183.
[ 7 ] Gao C, Ren S, Lee JH, et al. RBFox1-mediated RNA splicing regulates cardiac hypertrophy and heart failure[J]. J Clin Invest, 2015, 126(1):195-206.
[ 8 ] Groeneweg JA, Ummels A, Mulder M, et al. Functional assessment of potential splice site variants in arrhythmogenic right ventricular dysplasia/cardiomyopathy[J]. Heart Rhythm, 2014, 11(11):2010-2017.
[ 9 ] Herman DS, Lam L, Taylor MR, et al. Truncations of titin causing dilated cardiomyopathy[J]. N Engl J Med, 2012, 366(7):619-628.
[10] Tsuji-Wakisaka K, Akao M, Ishii TM, et al. Identification and functional characterization of KCNQ1 mutations around the exon 7-intron 7 junction affecting the splicing process[J]. Biochim Biophys Acta, 2011, 1812(11):1452-1459.
[11] Stump MR, Gong Q, Zhou Z. Multiple splicing defects caused by hERG splice site mutation 2592+1G>A associated with long QT syndrome[J]. Am J Physiol Heart Circ Physiol, 2011, 300(1):H312-H318.
[12] Sag CM, Wadsack DP, Khabbazzadeh S, et al. Calcium/calmodulin-dependent protein kinase Ⅱ contributes to cardiac arrhythmogenesis in heart failure[J]. Circ Heart Fail, 2009, 2(6):664-675.
[13] van den Hoogenhof MMG, Beqqali A, Amin AS, et al. RBM20 mutations induce an arrhythmogenic dilated cardiomyopathy related to disturbed calcium handling[J]. Circulation, 2018, 138(13):1330-1342.
[14] Tejedor JR, Tilgner H, Iannone C, et al. Role of six single nucleotide polymorphisms, risk factors in coronary disease, in OLR1 alternative splicing[J]. RNA, 2015, 21(6):1187-1202.
[15] Tang ZZ, Liang MC, Lu S, et al. Transcript scanning reveals novel and extensive splice variations in human L-type voltage-gated calcium channel, Cav1.2 alpha1 subunit[J]. J Biol Chem, 2004, 279(43):44335-44343.
[16] Zhou Y, Fan J, Zhu H, et al. Aberrant splicing induced by dysregulated Rbfox2 produces enhanced function of cav1.2 calcium channel and vascular myogenic tone in hypertension[J]. Hypertension, 2017, 70(6):1183-1192.
[17] Bennett CF. Therapeutic antisense oligonucleotides are coming of age[J]. Annu Rev Med, 2019, 70(1):307-321.
[18] Charleston JS, Schnell FJ, Dworzak J, et al. Eteplirsen treatment for Duchenne muscular dystrophy: exon skipping and dystrophin production[J]. Neurology, 2018, 90(24): e2146-e2154.
[19] Chiriboga CA. Nusinersen for the treatment of spinal muscular atrophy[J]. Expert Rev Neurother, 2017, 17(10):955-962.
[20] Stepniak-Konieczna E, Konieczny P, Cywoniuk P, et al. AON-induced splice-switching and DMPK pre-mRNA degradation as potential therapeutic approaches for myotonic dystrophy type 1[J]. Nucleic Acids Res, 2020, 48(5):2531-2543.
[21] Echigoya Y, Lim KRQ, Trieu N, et al. Quantitative antisense screening and optimization for exon 51 skipping in Duchenne muscular dystrophy[J]. Mol Ther, 2017, 25(11):2561-2572.
[22] Mendell JR, Goemans N, Lowes LP, et al. Longitudinal effect of eteplirsen versus historical control on ambulation in Duchenne muscular dystrophy[J]. Ann Neurol, 2016, 79(2):257-271.
[23] Lorain S, Peccate C, Le Hir M, et al. Dystrophin rescue by trans-splicing: a strategy for DMD genotypes not eligible for exon skipping approaches[J]. Nucleic Acids Res, 2013, 41(17):8391-8402.