索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]陈迪,程德琴,刘晓红,等.线粒体移植在心肌缺血再灌注损伤中的作用[J].国际心血管病杂志,2021,02:70-72.
点击复制

线粒体移植在心肌缺血再灌注损伤中的作用(PDF)

《国际心血管病杂志》[ISSN:1006-6977/CN:61-1281/TN]

期数:
2021年02期
页码:
70-72
栏目:
综述
出版日期:
2021-03-20

文章信息/Info

Title:
-
作者:
陈迪程德琴刘晓红徐志云
200433 上海,海军军医大学附属长海医院心血管外科
Author(s):
-
关键词:
线粒体移植 线粒体功能障碍 心肌缺血再灌注损伤
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-6583.2021.02.002
文献标识码:
-
摘要:
线粒体移植是可改善线粒体功能障碍导致的心肌损伤、维持心脏稳态的新兴技术。该文总结了线粒体移植产生心肌保护的作用机制,介绍了线粒体内化、来源、移植方法以及线粒体移植在心肌缺血再灌注损伤中的应用。线粒体移植为心肌缺血再灌注损伤的临床治疗提供了新思路。
Abstract:
-

参考文献/References

[1] Wu S, Chang G, Gao L, et al. Trimetazidine protects against myocardial ischemia/reperfusion injury by inhibiting excessive autophagy[J]. J Mol Med(Berl), 2018, 96(8):791-806.
[2] Payne B, Chinnery PF. Mitochondrial dysfunction in aging: much progress but many unresolved questions[J]. Biochim Biophys Acta, 2015, 1847(11):1347-1353.
[3] Kalogeris T, Baines CP, Krenz M, et al. Cell biology of ischemia/reperfusion injury[J]. Int Rev Cell Mol Biol, 2012, 298:229-317.
[4] Kiyuna LA, Albuquerque R, Chen CH, et al. Targeting mitochondrial dysfunction and oxidative stress in heart failure: challenges and opportunities[J]. Free Radic Biol Med, 2018, 129:155-168.
[5] Scheiber D, Zweck E, Jelenik T, et al. Reduced myocardial mitochondrial ROS production in mechanically unloaded hearts[J]. J Cardiovasc Transl Res, 2019, 12(2):107-115.
[6] Santulli G, Xie WJ, Reiken SR, et al. Mitochondrial calcium overload is a key determinant in heart failure[J]. Proc Natl Acad Sci U S A, 2015, 112(36):11389-11394.
[7] Ikeda Y, Shirakabe A, Brady C, et al. Molecular mechanisms mediating mitochondrial dynamics and mitophagy and their functional roles in the cardiovascular system[J]. J Mol Cell Cardiol, 2015, 78:116-122.
[8] Doenst T, Nguyen TD, Abel ED. Cardiac metabolism in heart failure: implications beyond ATP production[J]. Circ Res, 2013, 113(6):709-724.
[9] Moe GW, Marín-García J. Role of cell death in the progression of heart failure[J]. Heart Fail Rev, 2016, 21(2):157-167.
[10] Von HA, Maack C. Mitochondrial therapies in heart failure[J]. Handb Exp Pharmacol, 2017, 243:491-514.
[11] Kaza AK, Wamala I, Friehs I, et al. Myocardial rescue with autologous mitochondrial transplantation in a porcine model of ischemia/reperfusion[J]. J Thorac Cardiovasc Surg, 2017, 153(4):934-943.
[12] Masuzawa A, Black KM, Pacak CA, et al. Transplantation of autologously derived mitochondria protects the heart from ischemia-reperfusion injury[J]. Am J Physiol Heart Circ Physiol, 2013, 304(7):H966-H982.
[13] Thomas RL, Gustafsson AB. Mitochondrial autophagy—an essential quality control mechanism for myocardial homeostasis[J]. Circ J, 2013, 77(10):2449-2454.
[14] Pacak CA, Preble JM, Kondo H, et al. Actin-dependent mitochondrial internalization in cardiomyocytes: evidence for rescue of mitochondrial function[J]. Biol Open, 2015, 4(5):622-626.
[15] Lorita J, Soley M, Ramírez I. Epidermal growth factor protects the heart against low-flow ischemia-induced injury[J]. J Physiol Biochem, 2010, 66(1):55-62.
[16] Kocher AA, Schuster MD, Bonaros N, et al. Myocardial homing and neovascularization by human bone marrow angioblasts is regulated by IL-8/Gro CXC chemokines[J]. J Mol Cell Cardiol, 2006, 40(4):455-464.
[17] Kukat A, Kukat C, Brocher J, et al. Generation of rho0 cells utilizing a mitochondrially targeted restriction endonuclease and comparative analyses[J]. Nucleic Acids Res, 2008, 36(7):e44.
[18] Cowan DB, Yao R, Akurathi V, et al. Intracoronary delivery of mitochondria to the ischemic heart for cardioprotection[J]. PLoS One, 2016, 11(8):e0160889.
[19] Rose NR. Critical cytokine pathways to cardiac inflammation[J]. J Interferon Cytokine Res, 2011, 31(10):705-710.
[20] Hayakawa K, Chan SJ, Mandeville ET, et al. Protective effects of endothelial progenitor cell-derived extracellular mitochondria in brain endothelium[J]. Stem Cells, 2018, 36(9):1404-1410.
[21] Kitani T, Kami D, Matoba S, et al. Internalization of isolated functional mitochondria: involvement of macropinocytosis[J]. J Cell Mol Med, 2014, 18(8):1694-1703.
[22] Mccully JD, Cowan DB, Pacak CA, et al. Injection of isolated mitochondria during early reperfusion for cardioprotection[J]. Am J Physiol Heart Circ Physiol, 2009, 296(1):H94-H105.
[23] Emani SM, Piekarski BL, Harrild D, et al. Autologous mitochondrial transplantation for dysfunction after ischemia-reperfusion injury[J]. J Thorac Cardiovasc Surg, 2017, 154(1):286-289.
[24] Moskowitzova K, Shin B, Liu K, et al. Mitochondrial transplantation prolongs cold ischemia time in murine heart transplantation[J]. J Heart Lung Transplant, 2019, 38(1):92-99.
[25] Wang J, Li H, Yao Y, et al. Stem cell-derived mitochondria transplantation: a novel strategy and the challenges for the treatment of tissue injury[J]. Stem Cell Res Ther, 2018, 9(1):106.
[26] Preble JM, Pacak CA, Kondo H, et al. Rapid isolation and purification of mitochondria for transplantation by tissue dissociation and differential filtration[J]. J Vis Exp, 2014(91):e51682.
[27] Jiang D, Gao F, Zhang Y, et al. Mitochondrial transfer of mesenchymal stem cells effectively protects corneal epithelial cells from mitochondrial damage[J]. Cell Death Dis, 2016, 7(11):e2467.
[28] Liu CS, Chang JC, Kuo SJ, et al. Delivering healthy mitochondria for the therapy of mitochondrial diseases and beyond[J]. Int J Biochem Cell Biol, 2014, 53:141-146.
[29] Kim MJ, Hwang JW, Yun CK, et al. Delivery of exogenous mitochondria via centrifugation enhances cellular metabolic function[J]. Sci Rep, 2018, 8(1):3330.
[30] Oktay K, Baltaci V, Sonmezer M, et al. Oogonial precursor cell-derived autologous mitochondria injection to improve outcomes in women with multiple IVF failures due to low oocyte quality: a clinical translation[J]. Reprod Sci, 2015, 22(12):1612-1617.
[31] Blitzer D, Guariento A, Doulamis IP, et al. Delayed transplantation of autologous mitochondria for cardioprotection in a porcine model[J]. Ann Thorac Surg, 2020, 109(3):711-719.

备注/Memo

备注/Memo:
通信作者:徐志云,E-mail:xuzhiyunsmmu@126.com
更新日期/Last Update: 2021-03-20