索引超出了数组界限。
[1] Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3)[J]. JAMA, 2016, 315(8):801-810.
[2] 隋婧. 脓毒症导致心肌损伤机制探讨[J]. 中国血吸虫病防治杂志, 2024, 36(3):330.
[3] 黄颖, 唐立丽, 关于琳, 等. 脓毒症心肌损伤发病机制及治疗研究进展[J]. 实用医学杂志, 2023, 39(14):1848-1852.
[4] 黄薇. UCP2通过调控NLRP3炎症小体通路改善脓毒症心肌损伤的机制研究[D]. 北京: 北京协和医学院, 2021.
[5] Swanson KV, Deng M, Ting JPY. The NLRP3 inflammasome:molecular activation and regulation to therapeutics[J]. Nat Rev Immunol, 2019, 19(8):477-489.
[6] Zheng YD, Xu L, Dong NG, et al. NLRP3 inflammasome: the rising star in cardiovascular diseases[J]. Front Cardiovasc Med, 2022, 9:927061.
[7] Wu XY, Lv JY, Zhang SQ, et al. ML365 inhibits TWIK2 channel to block ATP-induced NLRP3 inflammasome[J]. Acta Pharmacol Sin, 2022, 43(4):992-1000.
[8] Groslambert M, Py BF. Spotlight on the NLRP3 inflammasome pathway[J]. J Inflamm Res, 2018, 11:359-374.
[9] 李心瑶, 陈俊, 李灼. 脓毒症心肌病的发病机制研究进展[J]. 心血管病学进展, 2024, 45(1):44-47, 61.
[10] Zhong ZY, Umemura A, Sanchez-Lopez E, et al. NF-κB restricts inflammasome activation via elimination of damaged mitochondria[J]. Cell, 2016, 164(5):896-910.
[11] Dai SS, Ye BZ, Chen LW, et al. Emodin alleviates LPS-induced myocardial injury through inhibition of NLRP3 inflammasome activation[J]. Phytother Res, 2021, 35(9):5203-5213.
[12] 田源, 肖雯, 袁李礼. 细胞焦亡在脓毒症心肌病中的研究进展[J]. 实用休克杂志(中英文), 2023, 7(3):165-169, 176.
[13] Zhang Y, Lv Y, Zhang QJ, et al. ALDH2 attenuates myocardial pyroptosis through breaking down mitochondrion-NLRP3 inflammasome pathway in septic shock[J]. Front Pharmacol, 2023, 14:1125866.
[14] Yan JR, Li ZY, Li YL, et al. Sepsis induced cardiotoxicity by promoting cardiomyocyte cuproptosis[J]. Biochem Biophys Res Commun, 2024, 690:149245.
[15] Zhong J, Lu XC, Zheng X, et al. Inducing pyroptosis and cuproptosis using copper carriers for ROS-augmented effective cancer therapy[J]. ACS Mater Lett, 2024, 6(9): 4282-4290.
[16] 李青松, 陈俊杰, 李永宁, 等. 姜黄素抑制NLRP3炎症小体减轻早期脓毒症大鼠心肌细胞损伤的机制研究[J]. 中华急诊医学杂志, 2022, 31(2):173-178.
[17] 黄承, 王业超, 田仁富, 等. S-烯丙基-L-半胱氨酸对大鼠脓毒症相关心肌损伤的影响及其与铜死亡的关系[J]. 武汉大学学报(医学版), 2023, 44(8):918-922.
[18] Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release[J]. Physiol Rev, 2014, 94(3):909-950.
[19] Shimada K, Crother TR, Karlin J, et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis[J]. Immunity, 2012, 36(3):401-414.
[20] Dominic A, Le NT, Takahashi M. Loop between NLRP3 inflammasome and reactive oxygen species[J]. Antioxid Redox Signal, 2022, 36(10-12):784-796.
[21] 陈锐. 木犀草素通过激活Nrf2信号抑制NLRP3炎症小体激活以减轻LPS诱导的脓毒症大鼠心肌损伤的研究[D]. 长春: 吉林大学, 2024.
[22] Xiang KY, Wu HG, Liu Y, et al. MOF-derived bimetallic nanozyme to catalyze ROS scavenging for protection of myocardial injury[J]. Theranostics, 2023, 13(8):2721-2733.
[23] Pei JQ, Wang F, Pei SQ, et al. Hydrogen sulfide promotes cardiomyocyte proliferation and heart regeneration via ROS scavenging[J]. Oxid Med Cell Longev, 2020, 2020:1412696.
[24] Zhao ZL, Du S, Shen SX, et al. MicroRNA-132 inhibits cardiomyocyte apoptosis and myocardial remodeling in myocardial infarction by targeting IL-1β[J]. J Cell Physiol, 2020, 235(3):2710-2721.
[25] Gon?alves AC, Ferreira LS, Manente FA, et al. The NLRP3 inflammasome contributes to host protection during Sporothrix schenckii infection[J]. Immunology, 2017, 151(2):154-166.
[26] Li N, Zhou H, Wu HM, et al. STING-IRF3 contributes to lipopolysaccharide-induced cardiac dysfunction, inflammation, apoptosis and pyroptosis by activating NLRP3[J]. Redox Biol, 2019, 24:101215.
[27] Wang LH, Zhao HS, Xu HF, et al. Targeting the TXNIP-NLRP3 interaction with PSSM1443 to suppress inflammation in sepsis-induced myocardial dysfunction[J]. J Cell Physiol, 2021, 236(6):4625-4639.
[28] Alarcón MML, Ruocco JF, Ferreira F, et al. Toll-like receptor 4 and NLRP3 caspase 1- interleukin-1β-axis are not involved in colon ascendens stent peritonitis-associated heart disease[J]. Shock, 2018, 50(4):483-492.
[29] Gong XR, Li Y, He Y, et al. USP7-SOX9-miR-96-5p-NLRP3 network regulates myocardial injury and cardiomyocyte pyroptosis in sepsis[J]. Hum Gene Ther, 2022, 33(19-20):1073-1090.
[30] 李萌芳, 胡系意, 陈隆望, 等. 黄芩苷调节STIM1介导的钙超载减轻脂多糖诱导的心肌细胞凋亡[J]. 中华医学杂志, 2019, 99(40):3176-3182.
[31] Chu J, Thomas LM, Watkins SC, et al. Cholesterol-dependent cytolysins induce rapid release of mature IL-1β from murine macrophages in a NLRP3 inflammasome and cathepsin B-dependent manner[J]. J Leukoc Biol, 2009, 86(5):1227-1238.
[32] Shin JN, Rao L, Sha YB, et al. p38 MAPK activity is required to prevent hyperactivation of NLRP3 inflammasome[J]. J Immunol, 2021, 207(2):661-670.
[33] Lee GS, Subramanian N, Kim AI, et al. The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP[J]. Nature, 2012, 492(7427):123-127.
[34] Wu QR, Yang H, Zhang HD, et al. IP3R2-mediated Ca2+ release promotes LPS-induced cardiomyocyte pyroptosis via the activation of NLRP3/Caspase-1/GSDMD pathway[J]. Cell Death Discov, 2024, 10(1):91.
[35] Katsnelson MA, Rucker LG, Russo HM, et al. K+ e?ux agonists induce NLRP3 inflammasome activation independently of Ca2+signaling[J]. J Immunol, 2015, 194(8):3937-3952.
[36] Zhou Q, Xie M, Zhu J, et al. PINK1 contained in huMSC-derived exosomes prevents cardiomyocyte mitochondrial calcium overload in sepsis via recovery of mitochondrial Ca2+ e?ux[J]. Stem Cell Res Ther, 2021, 12(1):269.
[37] Hsieh IN, Deluna X, White MR, et al. Histone H4 directly stimulates neutrophil activation through membrane permeabilization[J]. J Leukoc Biol, 2021, 109(4):763-775.
[38] Cheng ZX, Abrams ST, Alhamdi Y, et al. Circulating histones are major mediators of multiple organ dysfunction syndrome in acute critical illnesses[J]. Crit Care Med, 2019, 47(8):e677-e684.
[39] Shi CX, Wang Y, Chen Q, et al. Extracellular histone H3 induces pyroptosis during sepsis and may act through NOD2 and VSIG4/NLRP3 pathways[J]. Front Cell Infect Microbiol, 2020, 10:196.
[40] Liu JJ, Li Y, Yang MS, et al. SP1-induced ZFAS1 aggravates sepsis-induced cardiac dysfunction via miR-590-3p/NLRP3-mediated autophagy and pyroptosis[J]. Arch Biochem Biophys, 2020, 695:108611.