索引超出了数组界限。
[1] Sun JH, Qiao YN, Zhao M, et al. Global, regional, and national burden of cardiovascular diseases in youths and young adults aged 15-39 years in 204 countries/territories, 1990-2019: a systematic analysis of Global Burden of Disease Study 2019[J]. BMC Med, 2023, 21(1):222.
[2] Di Pietro P, Izzo C, Abate AC, et al. The dark side of sphingolipids: searching for potential cardiovascular biomarkers[J]. Biomolecules, 2023, 13(1):168.
[3] Chaurasia B, Summers SA. Ceramides in metabolism: key lipotoxic players[J]. Annu Rev Physiol, 2021, 83:303-330.
[4] Chen JQ, Wu KX, Lin YN, et al. Association of triglyceride glucose index with all-cause and cardiovascular mortality in the general population[J]. Cardiovasc Diabetol, 2023, 22(1):320.
[5] Diaz-Vegas A, Madsen S, Cooke KC, et al. Mitochondrial electron transport chain, ceramide, and coenzyme Q are linked in a pathway that drives insulin resistance in skeletal muscle[J]. Elife, 2023, 12:RP87340.
[6] B?achnio-Zabielska AU, Roszczyc-Owsiejczuk K, Imierska M, et al. CerS1 but not CerS5 gene silencing, improves insulin sensitivity and glucose uptake in skeletal muscle[J]. Cells, 2022, 11(2):206.
[7] Wittenbecher C, Cuadrat R, Johnston L, et al. Dihydroceramide-and ceramide-profiling provides insights into human cardiometabolic disease etiology[J]. Nat Commun, 2022, 13(1):936.
[8] Ma XM, Geng K, Law BYK, et al. Lipotoxicity-induced mtDNA release promotes diabetic cardiomyopathy by activating the cGAS-STING pathway in obesity-related diabetes[J]. Cell Biol Toxicol, 2023, 39(1):277-299.
[9] Hammerschmidt P, Steculorum SM, Bandet CL, et al. CerS6-dependent ceramide synthesis in hypothalamic neurons promotes ER/mitochondrial stress and impairs glucose homeostasis in obese mice[J]. Nat Commun, 2023, 14(1):7824.
[10] Luo YH, Yang SM, Wu X, et al. Intestinal MYC modulates obesity-related metabolic dysfunction[J]. Nat Metab, 2021,3(7):923-939.
[11] Bhat OM, Yuan X, Kukreja RC, et al. Regulatory role of mammalian target of rapamycin signaling in exosome secretion and osteogenic changes in smooth muscle cells lacking acid ceramidase gene[J]. FASEB J, 2021, 35(7):e21732.
[12] Luong TTD, Tuffaha R, Schuchardt M, et al. Acid sphingomyelinase promotes SGK1-dependent vascular calcification[J]. Clin Sci (Lond), 2021, 135(3):515-534.
[13] Liao LZ, Zhou Q, Song Y, et al. Ceramide mediates Ox-LDL-induced human vascular smooth muscle cell calcification via p38 mitogen-activated protein kinase signaling[J]. PLoS One, 2013, 8(12):e82379.
[14] Crow MK. Pathogenesis of systemic lupus erythematosus: risks, mechanisms and therapeutic targets[J]. Ann Rheum Dis, 2023, 82(8):999-1014.
[15] Piccoli M, Cirillo F, Ghiroldi A, et al. Sphingolipids and atherosclerosis: the dual role of ceramide and sphingosine-1-phosphate[J]. Antioxidants (Basel), 2023, 12(1):143.
[16] Gaggini M, Ndreu R, Michelucci E, et al. Ceramides as mediators of oxidative stress and inflammation in cardiometabolic disease[J]. Int J Mol Sci, 2022, 23(5):2719.
[17] Akawi N, Checa A, Antonopoulos AS, et al. Fat-secreted ceramides regulate vascular redox state and influence outcomes in patients with cardiovascular disease[J]. J Am Coll Cardiol, 2021, 77(20):2494-2513.
[18] Wu Q, Sun LL, Hu XM, et al. Suppressing the intestinal farnesoid X receptor/sphingomyelin phosphodiesterase 3 axis decreases atherosclerosis[J]. J Clin Invest, 2021, 131(9):e142865.
[19] Yang K, Nong KY, Xu F, et al. Discovery of novel N-Hydroxy-1,2,4-oxadiazole-5-formamides as ASM direct inhibitors for the treatment of atherosclerosis[J]. J Med Chem, 2023, 66(4):2681-2698.
[20] Zhang XZ, Zhang YM, Wang PC, et al. Adipocyte hypoxia-inducible factor 2α suppresses atherosclerosis by promoting adipose ceramide catabolism[J]. Cell Metab, 2019, 30(5):937-951. e5.
[21] Cantalupo AN, Sasset L, Gargiulo A, et al. Endothelial sphingolipid de novo synthesis controls blood pressure by regulating signal transduction and NO via ceramide[J]. Hypertension, 2020, 75(5):1279-1288.
[22] Pepe G, Cotugno M, Marracino F, et al. Differential expression of sphingolipid metabolizing enzymes in spontaneously hypertensive rats: a possible substrate for susceptibility to brain and kidney damage[J]. Int J Mol Sci, 2021, 22(7):3796.
[23] Jin JY, Chang SH, Chen YQ, et al. Reticulon 3 regulates sphingosine-1-phosphate synthesis in endothelial cells to control blood pressure[J]. MedComm (2020), 2024, 5(2):e480.
[24] Yin WJ, Li FJ, Tan X, et al. Plasma ceramides and cardiovascular events in hypertensive patients at high cardiovascular risk[J]. Am J Hypertens, 2021, 34(11):1209-1216.
[25] Cui SY, Zhang XT, Li YH, et al. UGCG modulates heart hypertrophy through B4GalT5-mediated mitochondrial oxidative stress and the ERK signaling pathway[J]. Cell Mol Biol Lett, 2023, 28(1):71.
[26] Kyriazis ID, Hoffman M, Gaignebet L, et al. KLF5 is induced by FOXO1 and causes oxidative stress and diabetic cardiomyopathy[J]. Circ Res, 2021, 128(3):335-357.
[27] Sasset L, Manzo OL, Zhang Y, et al. Nogo-A reduces ceramide de novo biosynthesis to protect from heart failure[J]. Cardiovasc Res, 2023, 119(2):506-519.
[28] Leonardini A, D'Oria R, Incalza MA, et al. GLP-1 receptor activation inhibits palmitate-induced apoptosis via ceramide in human cardiac progenitor cells[J]. J Clin Endocrinol Metab, 2017, 102(11):4136-4147.
[29] Lemaitre RN, Jensen PN, Hoofnagle A, et al. Plasma ceramides and sphingomyelins in relation to heart failure risk[J]. Circ Heart Fail, 2019, 12(7):e005708.
[30] Peterson LR, Xanthakis V, Duncan MS, et al. Ceramide remodeling and risk of cardiovascular events and mortality[J]. J Am Heart Assoc, 2018, 7(10):e007931.
[31] Nwabuo CC, Duncan M, Xanthakis V, et al. Association of circulating ceramides with cardiac structure and function in the community: the Framingham heart study[J]. J Am Heart Assoc, 2019, 8(19):e013050.
[32] Ji R, Akashi H, Drosatos K, et al. Increased de novo ceramide synthesis and accumulation in failing myocardium[J]. JCI Insight, 2017, 2(14):e96203.
[33] Golaszewska K, Harasim-Symbor E, Polak-Iwaniuk A, et al. Serum fatty acid binding proteins as a potential biomarker in atrial fibrillation[J]. J Physiol Pharmacol, 2019, 70(1):25-35.
[34] Huang SY, Lu YY, Lin YK, et al. Ceramide modulates electrophysiological characteristics and oxidative stress of pulmonary vein cardiomyocytes[J]. Eur J Clin Invest, 2022, 52(4):e13690.
[35] Jensen PN, Fretts AM, Hoofnagle AN, et al. Plasma ceramides and sphingomyelins in relation to atrial fibrillation risk: the cardiovascular health study[J]. J Am Heart Assoc, 2020, 9(4):e012853.
[36] Okrzeja J. Karwowska A, B?achnio-Zabielska A. The role of obesity, inflammation and sphingolipids in the development of an abdominal aortic aneurysm[J]. Nutrients, 2022, 14(12):2438.
[37] Zhang X, Gong Z, Shen YC, et al. Alkaline ceramidase 1-mediated platelet ceramide catabolism mitigates vascular inflammation and abdominal aortic aneurysm formation[J]. Nat Cardiovasc Res, 2023, 2(12):1173-1189.
[38] Meher AK, Spinosa M, Davis JP, et al. Novel role of IL (interleukin)-1β in neutrophil extracellular trap formation and abdominal aortic aneurysms[J]. Arterioscler Thromb Vasc Biol, 2018, 38(4):843-853.
[39] Yang H, Yang FF, Luo MY, et al. Metabolomic profile reveals that ceramide metabolic disturbance plays an important role in thoracic aortic dissection[J]. Front Cardiovasc Med, 2022, 9:826861.
[40] Zhou XS, Wang RP, Zhang T, et al. Identification of lysophosphatidylcholines and sphingolipids as potential biomarkers for acute aortic dissection via serum metabolomics[J]. Eur J Vasc Endovasc Surg, 2019, 57(3):434-441.