索引超出了数组界限。
[1] Staerk L, Sherer JA, Ko D, et al. Atrial fibrillation: epidemiology, pathophysiology, and clinical outcomes[J]. Circ Res, 2017, 120(9):1501-1517.
[2] Hao Y, Li H, Cao YP, et al. Uricase and horseradish peroxidase hybrid CaHPO? nanoflower integrated with transcutaneous patches for treatment of hyperuricemia[J]. J Biomed Nanotechnol, 2019, 15(5):951-965.
[3] Zheng Y, Chen ZR, Yang JY, et al. The role of hyperuricemia in cardiac diseases: evidence, controversies, and therapeutic strategies[J]. Biomolecules, 2024, 14(7):753.
[4] Jordhani M, Cafka M, Seiti J, et al. The relationship between hyperuricemia and echocardiographic parameters in patients with chronic atrial fibrillation[J]. J Clin Med, 2023, 12(15):5034.
[5] Oseto H, Yamashita S, Tokuda M, et al. The association between hyperuricemia and atrial fibrillation recurrence after catheter ablation[J]. J Arrhythm, 2024, 40(3):520-526.
[6] Zhang Q, Wei YY, Huang SY, et al. The impact of serum uric acid on postoperative atrial fibrillation in coronary artery bypass graft[J]. Heart Surg Forum, 2022, 25(2):E320-E325.
[7] Tan CD, Liu JZ, Zheng YP, et al. Left atrial enlargement and high uric acid level are risk factors for left atrial thrombus or dense spontaneous echo contrast in atrial fibrillation patients with low to moderate embolic risk assessed by CHA2DS2-VASC score[J]. Front Cardiovasc Med, 2023, 10:937770.
[8] We?nicki M, Gorczyca-G?owacka I, Lubas A, et al. Association of hyperuricemia with impaired left ventricular systolic function in patients with atrial fibrillation and preserved kidney function:analysis of the POL-AF registry cohort[J]. Int J Environ Res Public Health, 2022, 19(12):7288.
[9] Canpolat U, Aytemir K, Yorgun H, et al. Usefulness of serum uric acid level to predict atrial fibrillation recurrence after cryoballoon-based catheter ablation[J]. Europace, 2014, 16(12):1731-1737.
[10] Aoyama D, Uzui H, Sekihara T, et al. Declines in serum uric acid level after catheter ablation of atrial fibrillation[J]. Heart Vessels, 2022, 37(12):2049-2058.
[11] 先良艳, 黄方洋, 王雪梅. 冠心病监护病房患者心房颤动发生机制及防治[J]. 国际心血管病杂志, 2024, 51(5):271-273.
[12] Yu PC, Cao JR, Sun HX, et al. Andrographolide protects against atrial fibrillation by alleviating oxidative stress injury and promoting impaired mitochondrial bioenergetics[J]. J Zhejiang Univ Sci B, 2023, 24(7):632-649.
[13] Li Z, Shen Y, Chen YQ, et al. High uric acid inhibits cardiomyocyte viability through the ERK/P38 pathway via oxidative stress[J]. Cell Physiol Biochem, 2018, 45(3):1156-1164.
[14] Badreldin H, El-Karef A, Ibrahim T, et al. Targeting Nrf2/HO-1 and NF-κB/TNF-α signaling pathways with empagliflozin protects against atrial fibrillation-induced acute kidney injury in rats[J]. Toxicology, 2024, 506:153879.
[15] Joosten LAB, Cri?an TO, Bjornstad P, et al. Asymptomatic hyperuricaemia: a silent activator of the innate immune system[J]. Nat Rev Rheumatol, 2020, 16(2):75-86.
[16] Xiao Z, Pan YC, Kong B, et al. Ubiquitin-specific protease 38 promotes inflammatory atrial fibrillation induced by pressure overload[J]. Europace, 2023, 26(1):euad366.
[17] Gong Y, Yu TT, Shuai W, et al. USP38 exacerbates atrial inflammation, fibrosis, and susceptibility to atrial fibrillation after myocardial infarction in mice[J]. Mol Med, 2023, 29(1):157.
[18] Deng YW, Liu F, Yang XL, et al. The key role of uric acid in oxidative stress, inflammation, fibrosis, apoptosis, and immunity in the pathogenesis of atrial fibrillation[J]. Front Cardiovasc Med, 2021, 8:641136.
[19] Wei X, Zhang M, Huang SA, et al. Hyperuricemia: a key contributor to endothelial dysfunction in cardiovascular diseases[J]. FASEB J, 2023, 37(7):e23012.
[20] Maruhashi T, Hisatome I, Kihara Y, et al. Hyperuricemia and endothelial function: from molecular background to clinical perspectives[J]. Atherosclerosis, 2018, 278:226-231.
[21] Han QQ, Ren QD, Guo X, et al. Punicalagin attenuates hyperuricemia via restoring hyperuricemia-induced renal and intestinal dysfunctions[J/OL]. J Adv Res, 2024:S2090-1232(24)00129-2.
[22] Wang XD, Liu J, Zhang YC, et al. Correlation between the elevated uric acid levels and circulating renin-angiotensin-aldosterone system activation in patients with atrial fibrillation[J]. Cardiovasc Diagn Ther, 2021, 11(1):50-55.
[23] Mascolo A, Urbanek K, De Angelis A, et al. Angiotensin Ⅱ and angiotensin 1-7: which is their role in atrial fibrillation?[J]. Heart Fail Rev, 2020, 25(2):367-380.
[24] Milanesi S, Verzola D, Cappadona F, et al. Uric acid and angiotensin Ⅱ additively promote inflammation and oxidative stress in human proximal tubule cells by activation of toll-like receptor 4[J]. J Cell Physiol, 2019, 234(7):10868-10876.
[25] Rochette L, Lorin J, Zeller M, et al. Nitric oxide synthase inhibition and oxidative stress in cardiovascular diseases: possible therapeutic targets?[J]. Pharmacol Ther, 2013, 140(3):239-257.
[26] Li J, Wang S, Zhang YL, et al. Immunoproteasome subunit β5i promotes Ang Ⅱ(angiotensin Ⅱ)-induced atrial fibrillation by targeting ATRAP(AngⅡtypeⅠreceptor-associated protein) degradation in mice[J]. Hypertension, 2019, 73(1):92-101.
[27] Hu XT, Rong S, Wang Q, et al. Association between plasma uric acid and insulin resistance in type 2 diabetes: a Mendelian randomization analysis[J]. Diabetes Res Clin Pract, 2021,171:108542.
[28] Zakynthinos GE, Tsolaki V, Oikonomou E, et al. Metabolic syndrome and atrial fibrillation: different entities or combined disorders[J]. J Pers Med, 2023, 13(9):1323.
[29] White WB, Saag KG, Becker MA, et al. Cardiovascular safety of febuxostat or allopurinol in patients with gout[J]. N Engl J Med, 2018, 378(13):1200-1210.
[30] Singh JA, Cleveland JD. Comparative effectiveness of allopurinol and febuxostat for the risk of atrial fibrillation in the elderly: a propensity-matched analysis of Medicare claims data[J]. Eur Heart J, 2019, 40(36):3046-3054.
[31] Zhao YM, Xu LB, Tian DL, et al. Effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on serum uric acid level: a meta-analysis of randomized controlled trials[J]. Diabetes Obes Metab, 2018, 20(2):458-462.
[32] Chung MC, Hung PH, Hsiao PJ, et al. Association of sodium-glucose transport protein 2 inhibitor use for type 2 diabetes and incidence of gout in Taiwan[J]. JAMA Netw Open, 2021, 4(11):e2135353.
[33] Novikov A, Fu YL, Huang W, et al. SGLT2 inhibition and renal urate excretion: role of luminal glucose, GLUT9, and URAT1[J]. Am J Physiol Renal Physiol, 2019, 316(1):F173-F185.
[34] Lu YH, Chang YP, Li T, et al. Empagliflozin attenuates hyperuricemia by upregulation of ABCG2 via AMPK/AKT/CREB signaling pathway in type 2 diabetic mice[J]. Int J Biol Sci, 2020, 16(3):529-542.
[35] Zelniker TA, Bonaca MP, Furtado RHM, et al. Effect of dapagliflozin on atrial fibrillation in patients with type 2 diabetes mellitus: insights from the DECLARE-TIMI 58 trial[J]. Circulation, 2020, 141(15):1227-1234.
[36] Dutka M, Bobiński R, Ulman-W?odarz I, et al. Sodium glucose cotransporter 2 inhibitors: mechanisms of action in heart failure[J]. Heart Fail Rev, 2021, 26(3):603-622.
[37] 林浩, 袁得强, 陈飞, 等. SGLT2抑制剂在冠心病中的作用机制的研究进展[J]. 同济大学学报(医学版), 2023, 44(6):925-932.
[38] Sato T, Aizawa YSF, Yuasa S, et al. The effect of dapagliflozin treatment on epicardial adipose tissue volume and P-wave indices: an ad-hoc analysis of the previous randomized clinical trial[J]. J Atheroscler Thromb, 2020, 27(12):1348-1358.
[39] Wang QQ, Zhuo CG, Xia Q, et al. Sacubitril/valsartan can reduce atrial fibrillation recurrence after catheter ablation in patients with persistent atrial fibrillation[J]. Cardiovasc Drugs Ther, 2023, 37(3):549-560.
[40] Li LYF, Lou Q, Liu GZ, et al. Sacubitril/valsartan attenuates atrial electrical and structural remodelling in a rabbit model of atrial fibrillation[J]. Eur J Pharmacol, 2020, 881:173120.
[41] Najafi S, Bahrami M, Butler AE, et al. The effect of glucagon-like peptide-1 receptor agonists on serum uric acid concentration:a systematic review and meta-analysis[J]. Br J Clin Pharmacol, 2022, 88(8):3627-3637.