索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]朱雯钰,唐毅,彭建强.PCSK6在心血管疾病中的作用[J].国际心血管病杂志,2024,06:354-355,359.
点击复制

PCSK6在心血管疾病中的作用(PDF)

《国际心血管病杂志》[ISSN:1006-6977/CN:61-1281/TN]

期数:
2024年06期
页码:
354-355,359
栏目:
综述
出版日期:
2024-12-10

文章信息/Info

Title:
-
作者:
朱雯钰唐毅彭建强
410005 长沙,湖南师范大学附属第一医院(朱雯钰);410005 长沙,湖南省人民医院(湖南师范大学附属第一医院)心血管内科,湖南省心力衰竭临床医学研究中心(唐毅,彭建强)
Author(s):
-
关键词:
PCSK6 心肌梗死心室重构高血压动脉粥样硬化
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-6583.2024.06.007
文献标识码:
-
摘要:
前蛋白转化酶枯草溶菌素6(PCSK6)是分泌型丝氨酸蛋白酶,可裂解多种生长因子、信号分子、肽类激素、蛋白水解酶和黏附蛋白。在心血管系统中,PCSK6在心脏形成、脂蛋白代谢、体液稳态、心脏修复和血管重构中起着关键的调节作用。PCSK6的表达或功能失调与急性心肌梗死后心室重构、动脉粥样硬化和血管重构、高血压、房间隔缺损和心脏老化等多种心血管疾病有关。
Abstract:
-

参考文献/References

[1] Seidah NG, Prat A. The biology and therapeutic targeting of the proprotein convertases[J]. Nat Rev Drug Discov, 2012, 11(5):367-383.
[2] Shakya M, Lindberg I. Mouse models of human proprotein convertase insufficiency[J]. Endocr Rev, 2021, 42(3):259-294.
[3] Beaubien G, Sch?fer MK, Weihe E, et al. The distinct gene expression of the pro-hormone convertases in the rat heart suggests potential substrates[J]. Cell Tissue Res, 1995, 279(3):539-549.
[4] Uhlén M, Fagerberg L, Hallstr?m BM, et al. Proteomics. tissue-based map of the human proteome[J]. Science, 2015, 347(6220):1260419.
[5] Wu QY, Chen SH. Proprotein convertase subtilisin/kexin 6 in cardiovascular biology and disease[J]. Int J Mol Sci, 2022, 23(21):13429.
[6] Prabhu SD, Frangogiannis NG. The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis[J]. Circ Res, 2016, 119(1):91-112.
[7] Kuhn TC, Knobel J, Burkert-Rettenmaier S, et al. Secretome analysis of cardiomyocytes identifies PCSK6 (proprotein convertase subtilisin/kexin type 6) as a novel player in cardiac remodeling after myocardial infarction[J]. Circulation, 2020, 141(20):1628-1644.
[8] Sawada Y, Inoue M, Kanda T, et al. Co-elevation of brain natriuretic peptide and proprotein-processing endoprotease furin after myocardial infarction in rats[J]. FEBS Lett, 1997, 400(2):177-182.
[9] Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis[J]. Nature, 2011, 473(7347):317-325.
[10] Suh JH, Yoon JS, Kwon JB, et al. Identification of genomic aberrations by array comparative genomic hybridization in patients with aortic dissections[J]. Korean J Thorac Cardiovasc Surg, 2011, 44(2):123-130.
[11] Turpeinen H, Raitoharju E, Oksanen A, et al. Proprotein convertases in human atherosclerotic plaques: the overexpression of FURIN and its substrate cytokines BAFF and April[J]. Atherosclerosis, 2011, 219(2):799-806.
[12] Suur BE, Chemaly M, Lindquist Liljeqvist M, et al. Therapeutic potential of the Proprotein Convertase Subtilisin/Kexin family in vascular disease[J]. Front Pharmacol, 2022, 13:988561.
[13] Testa G, Staurenghi E, Giannelli S, et al. Up-regulation of PCSK6 by lipid oxidation products: a possible role in atherosclerosis[J]. Biochimie, 2021, 181:191-203.
[14] R?hl S, Suur BE, Lengquist M, et al. Lack of PCSK6 increases flow-mediated outward arterial remodeling in mice[J]. Cells, 2020, 9(4):1009.
[15] Perisic L, Hedin E, Razuvaev A, et al. Profiling of atherosclerotic lesions by gene and tissue microarrays reveals PCSK6 as a novel protease in unstable carotid atherosclerosis[J]. Arterioscler Thromb Vasc Biol, 2013, 33(10):2432-2443.
[16] Rykaczewska U, Suur BE, R?hl S, et al. PCSK6 is a key protease in the control of smooth muscle cell function in vascular remodeling[J]. Circ Res, 2020, 126(5):571-585.
[17] Salo PP, Havulinna AS, Tukiainen T, et al. Genome-wide association study implicates atrial natriuretic peptide rather than B-type natriuretic peptide in the regulation of blood pressure in the general population[J]. Circ Cardiovasc Genet, 2017, 10(6):e001713.
[18] John SW, Krege JH, Oliver PM, et al. Genetic decreases in atrial natriuretic peptide and salt-sensitive hypertension[J]. Science, 1995, 267(5198):679-681.
[19] Tamura N, Ogawa Y, Chusho H, et al. Cardiac fibrosis in mice lacking brain natriuretic peptide[J]. Proc Natl Acad Sci USA, 2000, 97(8):4239-4244.
[20] Song W, Wang H, Wu QY. Atrial natriuretic peptide in cardiovascular biology and disease (NPPA)[J]. Gene, 2015, 569(1):1-6.
[21] Rubattu S, Forte M, Marchitti S, et al. Molecular implications of natriuretic peptides in the protection from hypertension and target organ damage development[J]. Int J Mol Sci, 2019, 20(4):798.
[22] Yan W, Sheng N, Seto M, et al. Corin,a Mosaic transmembrane serine protease encoded by a novel cDNA from human heart[J]. J Biol Chem, 1999, 274(21):14926-14935.
[23] Zhang XR, Gu XB, Zhang YK, et al. Corin: a key mediator in Sodium homeostasis, vascular remodeling, and heart failure[J]. Biology (Basel), 2022, 11(5):717.
[24] Dong NZ, Niu YA, Chen Y, et al. Function and regulation of corin in physiology and disease[J]. Biochem Soc Trans, 2020, 48(5):1905-1916.
[25] Yan W, Wu F, Morser J, et al. Corin, a transmembrane cardiac serine protease, acts as a pro-atrial natriuretic peptide-converting enzyme[J]. Proc Natl Acad Sci U S A, 2000, 97(15):8525-8529.
[26] Knappe S, Wu FY, Masikat MR, et al. Functional analysis of the transmembrane domain and activation cleavage of human corin:design and characterization of a soluble corin[J]. J Biol Chem, 2003, 278(52):52363-52370.
[27] Chen SH, Cao PX, Dong NZ, et al. PCSK6-mediated corin activation is essential for normal blood pressure[J]. Nat Med, 2015, 21(9):1048-1053.
[28] Chen SH, Wang H, Li H, et al. Functional analysis of corin protein domains required for PCSK6-mediated activation[J]. Int J Biochem Cell Biol, 2018, 94:31-39.
[29] Wang W, Shen JZ, Cui YJ, et al. Impaired Sodium excretion and salt-sensitive hypertension in corin-deficient mice[J]. Kidney Int, 2012, 82(1):26-33.
[30] Zhang Y, Zhou T, Niu Y, et al. Identification and functional analysis of CORIN variants in hypertensive patients[J]. Hum Mutat, 2017, 38(12):1700-1710.
[31] Prica M, Kamalathasan S, Gopaul K, et al. Adult congenital heart disease: a review of the simple lesions[J]. Br J Hosp Med (Lond), 2022, 83(1):1-12.
[32] Constam DB, Robertson EJ. SPC4/PACE4 regulates a TGFbeta signaling network during axis formation[J]. Genes Dev, 2000, 14(9):1146-1155.
[33] Webb G, Gatzoulis MA. Atrial septal defects in the adult:recent progress and overview[J]. Circulation, 2006, 114(15):1645-1653.
[34] McCulley DJ, Black BL. Transcription factor pathways and congenital heart disease[J]. Curr Top Dev Biol, 2012, 100:253-277.
[35] Zhou L, Liu JL, Olson P, et al. Tbx5 and Osr1 interact to regulate posterior second heart field cell cycle progression for cardiac septation[J]. J Mol Cell Cardiol, 2015, 85:1-12.
[36] Beck S, Le Good JA, Guzman M, et al. Extraembryonic proteases regulate Nodal signalling during gastrulation[J]. Nat Cell Biol, 2002, 4(12):981-985.
[37] Xie L, Hoffmann AD, Burnicka-Turek O, et al. Tbx5-hedgehog molecular networks are essential in the second heart field for atrial septation[J]. Dev Cell, 2012, 23(2):280-291.
[38] Zhan WX, Chen LP, Liu HF, et al. Pcsk6 deficiency promotes cardiomyocyte senescence by modulating Ddit3-mediated ER stress[J]. Genes (Basel), 2022, 13(4):711.

备注/Memo

备注/Memo:
基金项目:湖南省科技创新重点工程(2020SK1013);湖南省临床医疗技术创新引导项目(2020SK50922)
通信作者:彭建强,E-mail:pengjianqiang2021@foxmail.com
更新日期/Last Update: 2024-12-10