[1] Dunlay SM, Roger VL, Redfield MM. Epidemiology of heart failure with preserved ejection fraction[J]. Nat Rev Cardiol, 2017, 14(10):591-602.
[2] Aguado J, d'Adda di Fagagna F, Wolvetang E. Telomere transcription in ageing[J]. Ageing Res Rev, 2020, 62:32565330.
[3] López-Otín C, Blasco MA, Partridge L, et al. Hallmarks of aging:an expanding universe[J]. Cell, 2023, 186(2):243-278.
[4] Schiattarella GG, Altamirano F, Tong D, et al. Nitrosative stress drives heart failure with preserved ejection fraction[J]. Nature, 2019, 568(7752):351-356.
[5] Chen XN, Lin H, Xiong WY, et al. p53-dependent mitochondrial compensation in heart failure with preserved ejection fraction[J]. J Am Heart Assoc, 2022, 11(11):e024582.
[6] 陈骁楠, 张俊峰, 王长谦, 等. 小鼠射血分数保留心力衰竭模型的建立[J]. 上海交通大学学报(医学版), 2021, 41(5):565-570.
[7] Chakravarti D, LaBella KA, DePinho RA. Telomeres: history, health, and hallmarks of aging[J]. Cell, 2021, 184(2):306-322.
[8] Borlaug BA. Evaluation and management of heart failure with preserved ejection fraction[J]. Nat Rev Cardiol, 2020, 17(9):559-573.
[9] Cai NS, Wu Y, Huang Y. Induction of accelerated aging in a mouse model[J]. Cells, 2022, 11(9):1418.
[10] Deng Y, Xie M, Li Q, et al. Correction to: targeting mitochondria-inflammation circuit by β-hydroxybutyrate mitigates HFpEF[J]. Circ Res, 2022, 130(7):232-245.
[11] Chen P, Chen FC, Lei JX, et al. Activation of the miR-34a-mediated SIRT1/mTOR signaling pathway by urolithin a attenuates D-galactose-induced brain aging in mice[J]. Neurotherapeutics, 2019, 16(4):1269-1282.
[12] Lesnefsky EJ, Chen Q, Hoppel CL. Mitochondrial metabolism in aging heart[J]. Circ Res, 2016, 118(10):1593-1611.
[13] de Boer M, Te Lintel Hekkert M, Chang J, et al. DNA repair in cardiomyocytes is critical for maintaining cardiac function in mice[J]. Aging Cell, 2023, 22(3):e13768.
[14] Henpita C, Vyas R, Healy CL, et al. Loss of DNA repair mechanisms in cardiac myocytes induce dilated cardiomyopathy[J]. Aging Cell, 2023, 22(4):e13782.
[15] Papait R, Serio S, Condorelli G. Role of the epigenome in heart failure[J]. Physiol Rev, 2020, 100(4):1753-1777.
[16] Etchegaray JP, Mostoslavsky R. Interplay between metabolism and epigenetics: anuclear adaptation to environmental changes[J]. Mol Cell, 2016, 62(5):695-711.
[17] Packer M. Cardioprotective effects of sirtuin-1 and its downstream effectors: potential role in mediating the heart failure benefits of SGLT2 (sodium-glucose cotransporter 2) inhibitors[J]. Circ Heart Fail, 2020, 13(9):e007197.
[18] Sundaresan NR, Gupta M, Kim G, et al. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice[J]. J Clin Invest, 2009, 119(9):2758-2771.
[19] Wu XQ, Liu H, Brooks A, et al. SIRT6 mitigates heart failure with preserved ejection fraction in diabetes[J]. Circ Res, 2022, 131(11):926-943.