索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]卢俊权,农育新,魏学标,等.瓣膜内皮损伤致钙化性主动脉瓣疾病的分子机制[J].国际心血管病杂志,2024,04:212-215.
点击复制

瓣膜内皮损伤致钙化性主动脉瓣疾病的分子机制(PDF)

《国际心血管病杂志》[ISSN:1006-6977/CN:61-1281/TN]

期数:
2024年04期
页码:
212-215
栏目:
综述
出版日期:
2024-07-31

文章信息/Info

Title:
-
作者:
卢俊权农育新魏学标余丹青
作者单位:510080 广州,广东省医学科学院广东省心血管病研究所 广东省人民医院心血管内科广东省冠心病防治研究重点实验室(卢俊权,农育新,余丹青);510080 广州,广东省人民医院老年重症医学科 广东省老年医学研究所(魏学标)
Author(s):
-
关键词:
钙化性主动脉瓣疾病瓣膜内皮细胞瓣膜间质细胞钙化
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-6583.2024.04.006
文献标识码:
-
摘要:
钙化性主动脉瓣疾病(CAVD)是近年来常见的心血管疾病之一,其具体的发病机制尚不明确。瓣膜内皮细胞(VEC)是维持主动脉瓣稳态的屏障,机械力学因素、一氧化氮代谢障碍、氧化应激、脂质沉积和炎症均可引起VEC损伤,导致主动脉瓣钙化。此外,VEC还可以通过一氧化氮或内皮间充质转化来调节瓣膜间质细胞,影响主动脉瓣钙化的过程。该文总结了近年来VEC对CAVD的影响调控机制,为CAVD的治疗提供参考。
Abstract:
-

参考文献/References

[1] Coffey S, Roberts-Thomson R, Brown A, et al. Global epidemiology of valvular heart disease[J]. Nat Rev Cardiol, 2021, 18(12):853-864.
[2] Roth GA, Mensah GA, Johnson CO, et al. Global burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 study[J]. J Am Coll Cardiol, 2020, 76(25):2982-3021.
[3] Yi B, Zeng WK, Lv L, et al. Changing epidemiology of calcific aortic valve disease: 30-year trends of incidence, prevalence, and deaths across 204 countries and territories[J]. Aging (Albany NY), 2021, 13(9):12710-12732.
[4] 中国心血管健康与疾病报告2021编写组. 《中国心血管健康与疾病报告2021》概述[J]. 中国心血管病研究, 2022, 20(07):577-596.
[5] Thaden JJ, Nkomo VT, Enriquez-Sarano M. The global burden of aortic stenosis[J]. Prog Cardiovasc Dis, 2014, 56(6):565-571.
[6] Rutkovskiy A, Malashicheva A, Sullivan G, et al. Valve interstitial cells: the key to understanding the pathophysiology of heart valve calcification[J]. J Am Heart Assoc, 2017, 6(9):e006339.
[7] Di Vito A, Donato A, Presta I, et al. Extracellular matrix in calcific aortic valve disease: architecture, dynamic and perspectives[J]. Int J Mol Sci, 2021, 22(2):913.
[8] Zhang PJ, The E, Luo ZC, et al. Pro-inflammatory mediators released by activated monocytes promote aortic valve fibrocalcific activity[J]. Mol Med, 2022, 28(1):5.
[9] Dye B, Lincoln J. The endocardium and heart valves[J]. Cold Spring Harb Perspect Biol, 2020, 12(12):a036723.
[10] Driscoll K, Cruz AD, Butcher JT. Inflammatory and biomechanical drivers of endothelial-interstitial interactions in calcific aortic valve disease[J]. Circ Res, 2021, 128(9):1344-1370.
[11] Bischoff J, Aikawa E. Progenitor cells confer plasticity to cardiac valve endothelium[J]. J Cardiovasc Transl Res, 2011, 4(6):710-719.
[12] Greenspan LJ, Weinstein BM. To be or not to be: endothelial cell plasticity in development, repair, and disease[J]. Angiogenesis, 2021, 24(2):251-269.
[13] Matsumoto Y, Adams V, Walther C, et al. Reduced number and function of endothelial progenitor cells in patients with aortic valve stenosis: a novel concept for valvular endothelial cell repair[J]. Eur Heart J, 2009, 30(3):346-355.
[14] Hunyadi J, Farkas B, Oláh J, et al. Keratinocyte transplantation:covering of skin defects with autologous keratinocytes[J]. Orv Hetil, 1987;128(46):2409-2411.
[15] Chiu JJ, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives[J]. Physiol Rev, 2011, 91(1):327-387.
[16] Butcher JT, Nerem RM. Valvular endothelial cells and the mechanoregulation of valvular pathology[J]. Philos Trans R Soc Lond B Biol Sci, 2007, 362(1484):1445-1457.
[17] Deb N, Ali MS, Mathews A, et al. Shear type and magnitude affect aortic valve endothelial cell morphology, orientation, and differentiation[J]. Exp Biol Med (Maywood), 2021, 246(21):2278-2289.
[18] Hsu CD, Tchir A, Mirza A, et al. Valve endothelial cell exposure to high levels of flow oscillations exacerbates valve interstitial cell calcification[J]. Bioengineering (Basel), 2022, 9(8):393.
[19] Parra-Izquierdo I, Sánchez-Bayuela T, López J, et al. Interferons are pro-inflammatory cytokines in sheared-stressed human aortic valve endothelial cells[J]. Int J Mol Sci, 2021, 22(19):10605.
[20] Sucosky P, Balachandran K, Elhammali A, et al. Altered shear stress stimulates upregulation of endothelial VCAM-1 and ICAM-1 in a BMP-4- and TGF-beta1-dependent pathway[J]. Arterioscler Thromb Vasc Biol, 2009, 29(2):254-260.
[21] Mahler GJ, Frendl CM, Cao QF, et al. Effects of shear stress pattern and magnitude on mesenchymal transformation and invasion of aortic valve endothelial cells[J]. Biotechnol Bioeng, 2014, 111(11):2326-2337.
[22] Dayawansa NH, Baratchi S, Peter K. Uncoupling the vicious cycle of mechanical stress and inflammation in calcific aortic valve disease[J]. Front Cardiovasc Med, 2022;9:783543.
[23] Cyr AR, Huckaby LV, Shiva SS, et al. Nitric oxide and endothelial dysfunction[J]. Crit Care Clin, 2020, 36(2):307-321.
[24] El Accaoui RN, Gould ST, Hajj GP, et al. Aortic valve sclerosis in mice deficient in endothelial nitric oxide synthase[J]. Am J Physiol Heart Circ Physiol, 2014, 306(9):H1302-H1313.
[25] Liu ZT, Dong NG, Hui HP, et al. Endothelial cell-derived tetrahydrobiopterin prevents aortic valve calcification[J]. Eur Heart J, 2022, 43(17):1652-1664.
[26] Choi B, Lee S, Kim SM, et al. Dipeptidyl peptidase-4 induces aortic valve calcification by inhibiting insulin-like growth factor-1 signaling in valvular interstitial cells[J]. Circulation, 2017, 135(20):1935-1950.
[27] Montorfano I, Becerra A, Cerro R, et al. Oxidative stress mediates the conversion of endothelial cells into myofibroblasts via a TGF-β1 and TGF-β2-dependent pathway[J]. Lab Invest, 2014, 94(10):1068-1082.
[28] Schnitzler JG, Hoogeveen RM, Ali L, et al. Atherogenic lipoprotein(a) increases vascular glycolysis, thereby facilitating inflammation and leukocyte extravasation[J]. Circ Res, 2020, 126(10):1346-1359.
[29] Yetkin E, Waltenberger J. Molecular and cellular mechanisms of aortic stenosis[J]. Int J Cardiol. 2009, 135(1):4-13.
[30] Conte M, Petraglia L, Campana P, et al. The role of inflammation and metabolic risk factors in the pathogenesis of calcific aortic valve stenosis[J]. Aging Clin Exp Res, 2021, 33(7):1765-1770.
[31] Otto CM, Kuusisto J, Reichenbach DD, et al. Characterization of the early lesion of 'degenerative' valvular aortic stenosis. Histological and immunohistochemical studies[J]. Circulation, 1994, 90(2):844-853.
[32] Mathieu P, Bouchareb R, Boulanger MC. Innate and adaptive immunity in calcific aortic valve disease[J]. J Immunol Res, 2015:851945.
[33] Mathieu P, Boulanger MC. Basic mechanisms of calcific aortic valve disease[J]. Can J Cardiol, 2014, 30(9):982-993.
[34] van der Valk FM, Bekkering S, Kroon J, et al. Oxidized phospholipids on lipoprotein(a) elicit arterial wall inflammation and an inflammatory monocyte response in humans[J]. Circulation, 2016, 134(8):611-624.
[35] Serbulea V, Upchurch CM, Ahern KW, et al. Macrophages sensing oxidized DAMPs reprogram their metabolism to support redox homeostasis and inflammation through a TLR2-Syk-ceramide dependent mechanism[J]. Mol Metab, 2018, 7:23-34.
[36] Bochkov VN, Oskolkova OV, Birukov KG, et al. Generation and biological activities of oxidized phospholipids[J]. Antioxid redox signal, 2010, 12(8):1009-1059.
[37] Hjortnaes J, Shapero K, Goettsch C, et al. Valvular interstitial cells suppress calcification of valvular endothelial cells[J]. Atherosclerosis, 2015, 242(1):251-260.
[38] Rattazzi M, Pauletto P. Valvular endothelial cells: guardians or destroyers of aortic valve integrity?[J]. Atherosclerosis, 2015, 242(2):396-398.
[39] Mohler ER 3rd, Gannon F, Reynolds C, et al. Bone formation and inflammation in cardiac valves [J]. Circulation, 2001, 103(11):1522-1528.
[40] Zhou YZ, Li JM, Zhou K, et al. The methylation of Notch1 promoter mediates the osteogenesis differentiation in human aortic valve interstitial cells through Wnt/β-catenin signaling[J]. J Cell Physiol, 2019, 234(11):20366-20376.

备注/Memo

备注/Memo:
基金项目:广东省冠心病防治研究重点实验室项目(Y0120220151);国家自然科学基金(82002014);广东省自然科学基金(2021A1515010107);广东省医学科研基金(A2019409);广州市科技计划项目(201704020124)
通信作者:余丹青, E-mail:yudanqing@gdph.org.cn
更新日期/Last Update: 2024-07-31