索引超出了数组界限。
[1] Zaha VG, Meijers WC, Moslehi J. Cardio-immuno-oncology[J]. Circulation, 2020, 141(2):87-89.
[2] Brahmer JR, Lacchetti C, Thompson JA. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: american society of clinical oncology clinical practice guideline summary[J]. J Oncol Pract, 2018, 14(4):247-249.
[3] Dubrawsky N. Cancer statistics[J]. CA Cancer J Clin, 1989, 39(6):399-399.
[4] Totzeck M, Michel L, Lin Y, et al. Cardiotoxicity from chimeric antigen receptor-T cell therapy for advanced malignancies[J]. Eur Heart J, 2022, 43(20):1928-1940.
[5] Lee DW, Santomasso BD, Locke FL, et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells[J]. Biol Blood Marrow Transplant, 2019, 25(4):625-638.
[6] Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia[J]. N Engl J Med, 2018, 378(5):439-448.
[7] Shalabi HNN, Sachdev V, Kulshreshtha A, et al. Impact of cytokine release syndrome on cardiac function following CD19 CAR-T cell therapy in children and young adults with hematological malignancies[J]. J Immunother Cancer, 2020, 8(2):e001159.
[8] Lefebvre B, Kang Y, Smith AM, et al. Cardiovascular effects of CAR T cell therapy: a retrospective study[J]. JACC CardioOncol, 2020, 2(2):193-203.
[9] Alvi RM, Frigault MJ, Fradley MG, et al. Cardiovascular events among adults treated with chimeric antigen receptor T-cells (CAR-T)[J]. J Am Coll Cardiol, 2019, 74(25):3099-3108.
[10] Ganatra S, Dani SS, Yang EH, et al. Cardiotoxicity of T-cell antineoplastic therapies: JACC: CardioOncology primer[J]. JACC CardioOncol, 2022, 4(5):616-623.
[11] Burns EA, Gentille C, Trachtenberg B, et al. Cardiotoxicity associated with anti-CD19 chimeric antigen receptor T-cell (CAR-T) therapy: recognition, risk factors, and management[J]. Diseases, 2021, 9(1):20.
[12] Chmielewski M, Hombach A, Heuser C, et al. T cell activation by antibody-like immunoreceptors: increase in affinity of the single-chain fragment domain above threshold does not increase T cell activation against antigen-positive target cells but decreases selectivity[J]. J Immunol, 2004, 173(12):7647-7653.
[13] Hudecek M, Lupo-Stanghellini MT, Kosasih PL, et al. Receptor affinity and extracellular domain modifications affect tumor recognition by ROR1-specific chimeric antigen receptor T cells[J]. Clin Cancer Res, 2013, 19(12):3153-3164.
[14] Pettitt D, Arshad Z, Smith J, et al. CAR-T cells: a systematic review and mixed methods analysis of the clinical trial landscape[J]. Mol Ther, 2018, 26(2):342-353.
[15] Linette GP, Stadtmauer EA, Maus MV, et al. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma[J]. Blood, 2013, 122(6):863-871.
[16] Brudno JN, Kochenderfer JN. Toxicities of chimeric antigen receptor T cells: recognition and management[J]. Blood, 2016, 127(26):3321-3330.
[17] Frey N, Porter D. Cytokine release syndrome with chimeric antigen receptor T cell therapy[J]. Biol Blood Marrow Transplant, 2019, 25(4):e123-e127.
[18] Neelapu SS, Tummala S, Kebriaei P, et al. Chimeric antigen receptor T-cell therapy-assessment and management of toxicities[J]. Nat Rev Clin Oncol, 2018, 15(1):47-62.
[19] Albar Z, Albakri M, Hajjari J, et al. Inflammatory markers and risk of heart failure with reduced to preserved ejection fraction[J]. Am J Cardiol, 2022, 167:68-75.
[20] Hunter CA, Jones SA. Corrigendum: IL-6 as a keystone cytokine in health and disease[J]. Nat Immunol, 2017, 18(11):1271.
[21] Herrmann J. Adverse cardiac effects of cancer therapies:cardiotoxicity and arrhythmia[J]. Nat Rev Cardiol, 2020, 17(8):474-502.
[22] Shimabukuro-Vornhagen A, G?del P, Subklewe M, et al. Cytokine release syndrome[J]. J Immunother Cancer, 2018, 6(1):56.
[23] Vonderlin N, Siebermair J, Kaya E, et al. Critical inflammatory mechanisms underlying arrhythmias[J]. Herz, 2019, 44(2):121-129.
[24] Nagle SJ, Murphree C, Raess PW, et al. Prolonged hematologic toxicity following treatment with chimeric antigen receptor T cells in patients with hematologic malignancies[J]. Am J Hematol, 2021, 96(4):455-461.
[25] Brudno JN, Kochenderfer JN. Recent advances in CAR T-cell toxicity: mechanisms, manifestations and management[J]. Blood Rev, 2019, 34:45-55.
[26] Asnani A. Cardiotoxicity of immunotherapy: incidence, diagnosis, and management[J]. Curr Oncol Rep, 2018, 20(6):44.
[27] Zhang XQ, Qu HY, Yang T, et al. Regulation and functions of NLRP3 inflammasome in cardiac fibrosis: current knowledge and clinical significance[J]. Biomed Pharmacother, 2021,143:112219.
[28] Zhao MY, Wang LQ, Wang MZ, et al. Targeting fibrosis, mechanisms and cilinical trials[J]. Signal Transduct Target Ther, 2022, 7(1):206.
[29] Kato K, Logsdon NJ, Shin YJ, et al. Impaired myofibroblast dedifferentiation contributes to nonresolving fibrosis in aging[J]. Am J Respir Cell Mol Biol, 2020, 62(5):633-644.
[30] Giannandrea M, Parks WC. Diverse functions of matrix metalloproteinases during fibrosis[J]. Dis Model Mech, 2014, 7(2):193-203.
[31] Morfino P, Aimo A, Castiglione V, et al. Treatment of cardiac fibrosis: from neuro-hormonal inhibitors to CAR-T cell therapy[J]. Heart Fail Rev, 2023, 28(2):555-569.
[32] Schimmel K, Ichimura K, Reddy S, et al. Cardiac fibrosis in the pressure overloaded left and right ventricle as a therapeutic target[J]. Front Cardiovasc Med, 2022, 9:886553.
[33] Friedman SL. Fighting cardiac fibrosis with CAR T cells[J]. N Engl J Med, 2022, 386(16):1576-1578.
[34] Aghajanian H, Kimura T, Rurik JG, et al. Targeting cardiac fibrosis with engineered T cells[J]. Nature, 2019, 573(7774):430-433.
[35] Rurik JG, Tombácz I, Yadegari A, et al. CAR T cells produced in vivo to treat cardiac injury[J]. Science, 2022, 375(6576):91-96.
[36] Burstein DS, Maude S, Grupp S, et al. Cardiac profile of chimeric antigen receptor T cell therapy in children: a single-institution experience[J]. Biol Blood Marrow Transplant, 2018, 24(8):1590-1595.
[37] Guha A, Addison D, Jain P, et al. Cardiovascular events associated with chimeric antigen receptor T cell therapy: cross-sectional FDA adverse events reporting system analysis[J]. Biol Blood Marrow Transplant, 2020, 26(12):2211-2216.
[38] Singh N, Hofmann TJ, Gershenson Z, et al. Monocyte lineage-derived IL-6 does not affect chimeric antigen receptor T-cell function[J]. Cytotherapy, 2017, 19(7):867-880.
[39] Gardner RA, Ceppi F, Rivers J, et al. Preemptive mitigation of CD19 CAR T-cell cytokine release syndrome without attenuation of antileukemic efficacy[J]. Blood, 2019, 134(24):2149-2158.
[40] Ghosh AK, Chen DH, Guha A, et al. CAR T cell therapy-related cardiovascular outcomes and management: systemic disease or direct cardiotoxicity?[J]. JACC CardioOncol, 2020, 2(1):97-109.
[41] Giavridis T, Van der stegen SJC, Eyquem J,et al. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade[J]. Nat Med, 2018, 24(6):731-738.
[42] Strati P, Ahmed S, Kebriaei P, et al. Clinical efficacy of anakinra to mitigate CAR T-cell therapy-associated toxicity in large B-cell lymphoma[J]. Blood Adv, 2020, 4(13):3123-3127.