索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]付祥雯,孙慧.钠-葡萄糖共转运蛋白2抑制剂在射血分数 保留的心力衰竭治疗中的应用[J].国际心血管病杂志,2024,03:156-159.
点击复制

钠-葡萄糖共转运蛋白2抑制剂在射血分数 保留的心力衰竭治疗中的应用(PDF)

《国际心血管病杂志》[ISSN:1006-6977/CN:61-1281/TN]

期数:
2024年03期
页码:
156-159
栏目:
综述
出版日期:
2024-05-20

文章信息/Info

Title:
-
作者:
付祥雯孙慧
261053 潍坊,山东第二医科大学临床医学院(付祥雯); 250013 济南,山东第一医科大学附属中心医院心血管内科(孙慧)
Author(s):
-
关键词:
射血分数保留的心力衰竭钠- 葡萄糖共转运蛋白2 抑制剂病理生理机制
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-6583.2024.03.008
文献标识码:
-
摘要:
射血分数保留的心力衰竭(HFpEF)是因左室舒张期充盈受损和心肌顺应性降 低而引起的心力衰竭。HFpEF 的治疗主要以缓解症状为主,钠- 葡萄糖共转运蛋白2 抑制剂 (SGLT2i)可通过提高肥胖与运动耐受力、改善心肌细胞纤维化与能量代谢、拮抗心房颤动、 抑制交感系统及巨噬细胞活化等途径,治疗HFpEF 并改善其预后。该文介绍HFpEF 的病理 生理机制及SGLT2i 在HFpEF 治疗中的进展。
Abstract:
-

参考文献/References

[1] Writing Committee Members. ACC/AHA Joint Committee Members. 2022 AHA/ACC/HFSA guideline for the management of heart failure[J]. J Card Fail, 2022, 28(5):e1-e167.
[2] McDonagh TA, Metra M, Adamo M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure[J]. Eur Heart J, 2021, 42(36):3599-3726.
[3] Loescher CM, Hobbach AJ, Linke WA. Titin (TTN): from molecule to modifications, mechanics, and medical significance[J]. Cardiovasc Res, 2022, 118(14):2903-2918.
[4] Frisk M, Le C, Shen X, et al. Etiology-dependent impairment of diastolic cardiomyocyte calcium homeostasis in heart failure with preserved ejection fraction[J]. J Am Coll Cardiol, 2021, 77(4):405-419.
[5] Popovic D, Alogna A, Omar M, et al. Ventricular stiffening and chamber contracture in heart failure with higher ejection fraction[J]. Eur J Heart Fail, 2023, 25(5):657-668.
[6] Fernandes GC, Fernandes A, Cardoso R, et al. Association of SGLT2 inhibitors with arrhythmias and sudden cardiac death in patients with type 2 diabetes or heart failure: a meta-analysis of 34 randomized controlled trials[J]. Heart Rhythm, 2021, 18(7):1098-1105.
[7] Sorimachi H, Obokata M, Takahashi N, et al. Pathophysiologic importance of visceral adipose tissue in women with heart failure and preserved ejection fraction[J]. Eur Heart J, 2021, 42(16):1595-1605.
[8] Yasenjiang M, Cheng H, Guo Z, et al. Correlation between pulmonary vascular performance and hemodynamics in patients with pulmonary arterial hypertension[J]. Clin Exp Hypertens, 2023, 45(1):2185253.
[9] Saavedra-Alvarez A, Pereyra KV, Toledo C, et al. Vascular dysfunction in HFpEF: potential role in the development, maintenance, and progression of the disease[J]. Front Cardiovasc Med, 2022, 9:1070935.
[10] Wu X, Liu H, Brooks A, et al. SIRT6 mitigates heart failure with preserved ejection fraction in diabetes[J]. Circ Res, 2022, 131(11):926-943.
[11] Jhund PS, Kondo T, Butt JH, et al. Dapagliflozin across the range of ejection fraction in patients with heart failure: a patient-level, pooled meta-analysis of DAPA-HF and DELIVER[J]. Nat Med, 2022, 28(9):1956-1964.
[12] Anker SD, Butler J, Filippatos G, et al. Baseline characteristics of patients with heart failure with preserved ejection fraction in the EMPEROR-Preserved trial[J]. Eur J Heart Fail, 2020, 22(12):2383-2392.
[13] Chung CC, Lin YK, Chen YC, et al. Empagliflozin suppressed cardiac fibrogenesis through sodium-hydrogen exchanger inhibition and modulation of the calcium homeostasis[J]. Cardiovasc Diabetol, 2023, 22(1):27.
[14] Wu J, Liu T, Shi S, et al. Dapagliflozin reduces the vulnerability of rats with pulmonary arterial hypertension-induced right heart failure to ventricular arrhythmia by restoring calcium handling[J]. Cardiovasc Diabetol, 2022, 21(1):197.
[15] Op den Kamp YJM, Gemmink A, de Ligt M, et al. Effects of SGLT2 inhibitor dapagliflozin in patients with type 2 diabetes on skeletal muscle cellular metabolism[J]. Mol Metab, 2022, 66:101620.
[16] Mason T, Coelho-Filho OR, Verma S, et al. Empagliflozin reduces myocardial extracellular volume in patients with type 2 diabetes and coronary artery disease[J]. JACC Cardiovasc Imaging, 2021, 14(6):1164-1173.
[17] Ferrannini E, Baldi S, Frascerra S, et al. Shift to fatty substrate utilization in response to sodium-glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes[J]. Diabetes, 2016, 65(5):1190-1195.
[18] Hundertmark MJ, Adler A, Antoniades C, et al. Assessment of cardiac energy metabolism, function, and physiology in patients with heart failure taking empagliflozin: the randomized, controlled EMPA-VISION trial[J]. Circulation, 2023, 147(22):1654-1669.
[19] Deng Y, Xie M, Li Q, et al. Targeting mitochondria-inflammation circuit by β-hydroxybutyrate mitigates HFpEF[J]. Circ Res. 2021, 128(2):232-245.
[20] Szarek M, Bhatt DL, Steg PG, et al. Effect of sotagliflozin on total hospitalizations in patients with type 2 diabetes and worsening heart failure: a randomized trial[J]. Ann Intern Med, 2021, 174(8):1065-1072.
[21] Bhatt DL, Szarek M, Pitt B, et al. Sotagliflozin in patients with diabetes and chronic kidney disease[J]. N Engl J Med, 2021, 384(2):129-139.
[22] Kresoja KP, Rommel KP, Fengler K, et al. Renal sympathetic denervation in patients with heart failure with preserved ejection fraction[J]. Circ Heart Fail, 2021, 14(3):e007421.
[23] Liu H, Huang Y, Zhao Y, et al. Inflammatory macrophage interleukin-1β mediates high-fat diet-induced heart failure with preserved ejection fraction[J]. JACC Basic Transl Sci, 2022, 8(2):174-185.
[24] Wei R, Wang W, Pan Q, et al. Effects of SGLT-2 inhibitors on vascular endothelial function and arterial stiffness in subjects with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials[J]. Front Endocrinol (Lausanne), 2022, 13:826604.
[25] Myhre PL, Vaduganathan M, Claggett B, et al. B-type natriuretic peptide during treatment with sacubitril/valsartan: the PARADIGM-HF trial[J]. J Am Coll Cardiol, 2019, 73(11):1264- 1272.
[26] Solomon SD, McMurray JJV, Anand IS, et al. Angiotensinneprilysin inhibition in heart failure with preserved ejection fraction[J]. N Engl J Med, 2019, 381(17):1609-1620.
[27] Widiarti W, Sukmajaya AC, Nugraha D, et al. Cardioprotective properties of glucagon-like peptide-1 receptor agonists in type 2 diabetes mellitus patients: a systematic review[J]. Diabetes Metab Syndr, 2021, 15(3):837-843.
[28] Akar FG, Young LH. NAD repletion therapy: a silver bullet for HFpEF?[J]. Circ Res, 2021, 128(11):1642-1645.
[29] Tsch?p M, Nogueiras R, Ahrén B. Gut hormone-based pharmacology: novel formulations and future possibilities for metabolic disease therapy[J]. Diabetologia, 2023, 66(10):1796- 1808.
[30] Filippatos G, Anker SD, Agarwal R, et al. Finerenone reduces risk of incident heart failure in patients with chronic kidney disease and type 2 diabetes: analyses from the FIGARO-DKD trial[J]. Circulation, 2022, 145(6):437-447.

备注/Memo

备注/Memo:
基金项目:山东省医药卫生科技发展计划项目(202003011255)
通信作者:孙慧,E-mail: Sasa303@163.com
更新日期/Last Update: 2024-05-20