Index was outside the bounds of the array.
[1] Spivak JL. Myeloproliferative neoplasms[J]. N Engl J Med,
2017, 376(22):2168-2181.
[2] Tefferi A, Guglielmelli P, Larson DR, et al. Long-term survival
and blast transformation in molecularly annotated essential
thrombocythemia, polycythemia vera, and myelofibrosis[J].
Blood, 2014, 124(16):2507-2513, quiz 2615.
[3] Gangat N, Tefferi A. Myeloproliferative neoplasms and
pregnancy: overview and practice recommendations[J]. Am J
Hematol, 2021, 96(3):354-366.
[4] Rungjirajittranon T, Owattanapanich W, Ungprasert P, et al.
A systematic review and meta-analysis of the prevalence of
thrombosis and bleeding at diagnosis of Philadelphia-negative
myeloproliferative neoplasms[J]. BMC Cancer, 2019, 19(1):184.
[5] Greenfield G, McMullin MF, Mills K. Molecular pathogenesis
of the myeloproliferative neoplasms[J]. J Hematol Oncol, 2021,
14(1):103.
[6] Harrison CN, Nangalia J, Boucher R, et al. Ruxolitinib versus
best available therapy for polycythemia vera intolerant or
resistant to hydroxycarbamide in a randomized trial[J]. J Clin
Oncol, 2023, 41(19):3534-3544.
[7] Wu J, Zhang L, Vaze A, et al. Risk of Wernicke's encephalopathy
and cardiac disorders in patients with myeloproliferative
neoplasm[J]. Cancer Epidemiol, 2015, 39(2):242-249.
[8] Carobbio A, Ferrari A, Masciulli A, et al. Leukocytosis and
thrombosis in essential thrombocythemia and polycythemia vera:
a systematic review and meta-analysis[J]. Blood Adv, 2019,
3(11):1729-1737.
[9] Zhang XY, Zheng CT, Gao ZQ, et al. PKM2 promotes
angiotensin-Ⅱ-induced cardiac remodelling by activating TGF-β/
Smad2/3 and Jak2/Stat3 pathways through oxidative stress[J]. J
Cell Mol Med, 2021, 25(22):10711-10723.
[10] Sano S, Wang Y, Yura Y, et al. JAK2V617F-mediated clonal
hematopoiesis accelerates pathological remodeling in murine
heart failure[J]. JACC Basic Transl Sci, 2019, 4(6):684-697.
[11] Reddy YNV, Melenovsky V, Redfield MM, et al. High-output
heart failure: a 15-year experience[J]. J Am Coll Cardiol, 2016,
68(5):473-482.
[12] Venton G, Turcanu M, Colle J, et al. Pulmonary hypertension in
patients with myeloproliferative neoplasms: a large cohort of 183
patients[J]. Eur J Intern Med, 2019, 68:71-75.
[13] Brabrand M, Hansen KN, Laursen CB, et al. Frequency
and etiology of pulmonary hypertension in patients with
myeloproliferative neoplasms[J]. Eur J Haematol, 2019,
102(3):227-234.
[14] Ferrari A, Scandura J, Masciulli A, et al. Prevalence and risk
factors for pulmonary hypertension associated with chronic
myeloproliferative neoplasms[J]. Eur J Haematol, 2021,
106(2):250-259.
[15] Montani D, Thoré P, Mignard X, et al. Clinical phenotype
and outcomes of pulmonary hypertension associated with
myeloproliferative neoplasms: a population-based study[J]. Am J
Respir Crit Care Med, 2023, 208(5):600-612.
[16] Kim J, Krichevsky S, Xie L, et al. Incremental utility of right
ventricular dysfunction in patients with myeloproliferative
neoplasm-associated pulmonary hypertension[J]. J Am Soc
Echocardiogr, 2019, 32(12):1574-1585.
[17] Singh I, Mikita G, Green D, et al. Pulmonary extra-medullary
hematopoiesis and pulmonary hypertension from underlying
polycythemia vera: a case series[J]. Pulm Circ, 2017, 7(1):261-
267.
[18] Tachibana T, Nakayama N, Matsumura A, et al. Pulmonary
hypertension associated with pulmonary veno-occlusive disease
in patients with polycythemia vera[J]. Intern Med, 2017,
56(18):2487-2492.
[19] Eichstaedt CA, Verweyen J, Halank M, et al. Myeloproliferative
diseases as possible risk factor for development of chronic
thromboembolic pulmonary hypertension—a genetic study[J]. Int
J Mol Sci, 2020, 21(9):3339.
[20] De Stefano V, Ruggeri M, Cervantes F, et al. High rate
of recurrent venous thromboembolism in patients with
myeloproliferative neoplasms and effect of prophylaxis with
vitamin K antagonists[J]. Leukemia, 2016, 30(10):2032-2038.
[21] Wang W, Liu WL, Fidler T, et al. Macrophage inflammation,
erythrophagocytosis, and accelerated atherosclerosis in Jak2V617F
mice[J]. Circ Res, 2018, 123(11):e35-e47.
[22] Fidler TP, Xue CY, Yalcinkaya M, et al. The AIM2 inflammasome
exacerbates atherosclerosis in clonal haematopoiesis[J]. Nature,
2021, 592(7853):296-301.
[23] Dotan I, Yang JQ, Ikeda J, et al. Macrophage Jak2 deficiency
accelerates atherosclerosis through defects in cholesterol
efflux[J]. Commun Biol, 2022, 5(1):132.
[24] Fuster JJ, MacLauchlan S, Zuriaga MA, et al. Clonal
hematopoiesis associated with TET2 deficiency accelerates
atherosclerosis development in mice[J]. Science, 2017,
355(6327):842-847.
[25] An?i? Drofenik A, Vrtovec M, Bo?i? Mijovski M, et al.
Progression of coronary calcium burden and carotid stiffness
in patients with essential thrombocythemia associated with
JAK2V617F mutation[J]. Atherosclerosis, 2020, 296:25-31.
[26] Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory
therapy with canakinumab for atherosclerotic disease[J]. N Engl
J Med, 2017, 377(12):1119-1131.
[27] Genovese E, Mirabile M, Rontauroli S, et al. The response to
oxidative damage correlates with driver mutations and clinical
outcome in patients with myelofibrosis[J]. Antioxidants (Basel),
2022, 11(1):113.
[28] Fuentes E, Moore-Carrasco R, de Andrade Paes AM, et al. Role
of platelet activation and oxidative stress in the evolution of
myocardial infarction[J]. J Cardiovasc Pharmacol Ther, 2019,
24(6):509-520.
[29] Agarwal A, Morrone K, Bartenstein M, et al. Bone marrow
fibrosis in primary myelofibrosis: pathogenic mechanisms and
the role of TGF-β[J]. Stem cell Investig, 2016, 3:5.
[30] Yanagida M, Ide Y, Imai A, et al. The role of transforming growth
factor-beta in PEG-rHuMGDF-induced reversible myelofibrosis
in rats[J]. Br J Haematol, 1997, 99(4):739-745.
[31] Zhu XL, Wang YY, Soaita I, et al. Acetate controls endothelialto-
mesenchymal transition[J]. Cell Metab, 2023, 35(7):1163-
1178. e10.
[32] Janda K, Krzanowski M, Dumnicka P, et al. Transforming growth
factor beta 1 as a risk factor for cardiovascular diseases in endstage
renal disease patients treated with peritoneal dialysis[J].
Clin Lab, 2014, 60(7):1163-1168.
[33] Wesseling M, Sakkers TR, de Jager SCA, et al. The
morphological and molecular mechanisms of epithelial/
endothelial-to-mesenchymal transition and its involvement in
atherosclerosis[J]. Vascul Pharmacol, 2018, 106:1-8.
[34] Vrsalovic MM, Pejsa V, Veic TS, et al. Bone marrow reninangiotensin
system expression in polycythemia vera and essential
thrombocythemia depends on JAK2 mutational status[J]. Cancer
Biol Ther, 2007, 6(9):1434-1436.
[35] Barbui T, Masciulli A, Ghirardi A, et al. ACE inhibitors and
cytoreductive therapy in polycythemia vera[J]. Blood, 2017,
129(9):1226-1227.
[36] Corey SJ, Jha J, McCart EA, et al. Captopril mitigates
splenomegaly and myelofibrosis in the Gata1low murine model
of myelofibrosis[J]. J Cell Mol Med, 2018, 22(9):4274-4282.
[37] Svensson EC, Madar A, Campbell CD, et al. TET2-driven clonal
hematopoiesis and response to canakinumab: an exploratory
analysis of the CANTOS randomized clinical trial[J]. JAMA
Cardiol, 2022, 7(5):521-528.
[38] Baldini C, Moriconi FR, Galimberti S, et al. The JAK-STAT
pathway: an emerging target for cardiovascular disease in
rheumatoid arthritis and myeloproliferative neoplasms[J]. Eur
Heart J, 2021, 42(42):4389-4400.
[39] Lecomte S, Devreux J, de Streel G, et al. Therapeutic activity of
GARP: TGF-β1 blockade in murine primary myelofibrosis[J].
Blood, 2023, 141(5):490-502.