Index was outside the bounds of the array.
[1] Kiang SC, Nasiri AJ, Strilaeff RR, et al. Analysis of subjective
and objective screening techniques as predictors of safety for
radial artery intervention[J]. Ann Vasc Surg, 2020, 65:33-39.
[2] Jirous S, Bernat I, Slezak D, et al. Post-procedural radial artery
occlusion and patency detection using duplex ultrasound vs.
the reverse Barbeau test[J]. Eur Heart J Suppl, 2020, 22(Suppl
F):F23-F29.
[3] Dahal K, Sharma S, Yousuf A, et al. A comparison of standard
versus low dose heparin on access-related complications after
coronary angiography through radial access: a meta-analysis of
randomized controlled trials[J]. Cardiovasc Revasc Med, 2018,
19(5 Pt B):575-579.
[4] Munir U, Khan R, Nazeer N, et al. Frequency and predictors
of radial artery occlusion in patients undergoing percutaneous
coronary intervention[J]. Cureus, 2022, 14(5):e25505.
[5] 郭旺苗, 任明. 高血压合并糖尿病患者血管内皮功能的相关研
究[J]. 中国现代医药杂志, 2016, 18(8):94-96.
[6] Sakai H, Ikeda S, Harada T, et al. Limitations of successive
transradial approach in the same arm: the Japanese experience[J].
Catheter Cardiovasc Interv, 2001, 54(2):204-208.
[7] Wakeyama T, Ogawa H, Iwami T, et al. Distal radial arterial
hypertrophy after transradial intervention: a serial intravascular
ultrasound study[J]. J Cardiol, 2018, 72(6):501-505.
[8] Yonetsu T, Kakuta T, Lee T, et al. Assessment of acute injuries
and chronic intimal thickening of the radial artery after transradial
coronary intervention by optical coherence tomography[J]. Eur
Heart J, 2010, 31(13):1608-1615.
[9] Wang JB, Yi CX, Zhang JM. Study on influencing factors of
radial artery occlusion after repeated right radial artery coronary
intervention[J]. Contrast Media Mol Imaging, 2022, 2022:9624339.
[10] Horie K, Tada N, Isawa T, et al. A randomised comparison of
incidence of radial artery occlusion and symptomatic radial artery
spasm associated with elective transradial coronary intervention
using 6[J]. EuroIntervention, 2018, 13(17):2018-2025.
[11] Cheaito R, Benamer H, Hovasse T, et al. Feasibility and safety
of transradial coronary interventions using a 6.5-F sheathless
guiding catheter in patients with small radial arteries[J]. Catheter
Cardiovasc Interv, 2015, 86(1):51-58.
[12] Isawa T, Horie K, Honda T, et al. Slender sheath/guiding catheter
combination vs. sheathless guiding catheter for acute coronary
syndrome: a Propensity-Matched analysis of the two devices[J]. J
Interv Cardiol, 2020, 2020:8216831.
[13] Isawa T, Horie K, Taguri MST, et al. Access-site complications of
transradial percutaneous coronary intervention using sheathless
guiding catheters for acute coronary syndrome: a prospective
cohort study with radial ultrasound follow-up[J]. Cardiovasc
Interv Ther, 2020, 35(4):343-352.
[14] Nuttall G, Burckhardt J, Hadley A, et al. Surgical and patient
risk factors for severe arterial line complications in adults[J].
Anesthesiology, 2016, 124(3):590-597.
[15] Zhao L, Pang YL, Zhang HJ, et al. Different dose of heparin
in preventing radial artery occlusion after transradial coronary
angiography: a protocol for systematic review and meta-analysis
of randomized controlled trials[J]. Medicine (Baltimore), 2020,
99(46):e23227.
[16] Hahalis GN, Leopoulou M, Tsigkas G, et al. Multicenter
randomized evaluation of high versus standard heparin dose
on incident radial arterial occlusion after transradial coronary
angiography: the SPIRIT OF Artemis study[J]. JACC Cardiovasc
Interv, 2018, 11(22):2241-2250.
[17] Degirmencioglu A, Buturak A, Zencirci E, et al. Comparison
of effects of low-versus high-dose heparin on access-site
complications during transradial coronary angiography: a doubleblind
randomized study[J]. Cardiology, 2015, 131(3):142-148.
[18] Pacchioni A, Ferro J, Pesarini G, et al. The activated clotting
time paradox: relationship between activated clotting time and
occlusion of the radial artery when used as vascular access for
percutaneous coronary procedures[J]. Circ Cardiovasc Interv,
2019, 12(9):e008045.
[19] Pancholy S, Coppola J, Patel T, et al. Prevention of radial
artery occlusion-patent hemostasis evaluation trial (PROPHET
study): a randomized comparison of traditional versus patency
documented hemostasis after transradial catheterization[J].
Catheter Cardiovasc Interv, 2008, 72(3):335-340.
[20] Sanghvi KA, Montgomery M, Varghese V. Effect of hemostatic
device on radial artery occlusion: a randomized comparison
of compression devices in the radial hemostasis study[J].
Cardiovasc Revasc Med, 2018, 19(8):934-938.
[21] Pancholy SB, Bernat I, Bertrand OF, et al. Prevention of
radial artery occlusion after transradial catheterization: the
PROPHET-Ⅱ randomized trial[J]. JACC Cardiovasc Interv,
2016, 9(19):1992-1999.
[22] Shroff AR, Fernandez C, Vidovich MI, et al. Contemporary
transradial access practices: results of the second international
survey[J]. Catheter Cardiovasc Interv, 2019, 93(7):1276-1287.
[23] 庄燕, 俞家顺, 李晓静. 经桡动脉冠状动脉介入术后早期握
力锻炼对预防桡动脉闭塞的研究[J]. 山西医药杂志, 2022,
51(5):487-491.
[24] Wu XL, Wang JJ, Yuan DQ, et al. Ultrasound-guided radial artery
catheterization at different sites: a prospective and randomized
study[J]. Eur Rev Med Pharmacol Sci, 2022, 26(2):415-421.