索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]董松武,张静.急性ST 段抬高型心肌梗死患者冠状动脉无复流诊疗进展[J].国际心血管病杂志,2023,06:365-368.
点击复制

急性ST 段抬高型心肌梗死患者冠状动脉无复流诊疗进展(PDF)

《国际心血管病杂志》[ISSN:1006-6977/CN:61-1281/TN]

期数:
2023年06期
页码:
365-368
栏目:
综述
出版日期:
2023-11-20

文章信息/Info

Title:
-
作者:
董松武张静
236814 安徽医科大学附属亳州医院心内科(董松武), 检验中心(张静)
Author(s):
-
关键词:
急性ST 段抬高型心肌梗死经皮冠状动脉介入治疗无复流
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-6583.2023.06.008
文献标识码:
-
摘要:
经皮冠状动脉介入治疗(PCI)是急性ST 段抬高型心肌梗死(STEMI)的有 效治疗手段。冠状动脉无复流导致心肌灌注不足,是急诊PCI 失败的主要原因。冠状动脉无 复流与微循环的功能及结构改变有关,该文介绍STEMI 患者冠状动脉无复流的病理生理机 制和诊疗进展。
Abstract:
-

参考文献/References

[1] Ibanez B, James S, Agewall S, et al. 2017 ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the task force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC)[J]. Eur Heart J, 2018, 39(2):119-177.
[2] Durante A, Laricchia A, Benedetti G, et al. Identification of high-risk patients after ST-segment-elevation myocardial infarction: comparison between angiographic and magnetic resonance parameters[J]. Circ Cardiovasc Imaging, 2017, 10(6):e005841.
[3] Tasar O, Karabay AK, Oduncu V, et al. Predictors and outcomes of no-reflow phenomenon in patients with acute STsegment elevation myocardial infarction undergoing primary percutaneous coronary intervention[J]. Coron Artery Dis, 2019, 30(4):270-276.
[4] Bessonov IS, Kuznetsov VA, Gorbatenko EA, et al. Influence of total ischemic time on clinical outcomes in patients with ST-segment elevation myocardial infarction[J]. Kardiologiia, 2021, 61(2):40-46.
[5] 中华医学会心血管病学分会, 中华心血管病杂志编辑委员 会. ST段抬高型心肌梗死患者急诊PCI微循环保护策略中 国专家共识[J]. 中华心血管病杂志, 2022, 50(3):221-230.
[6] Kloner RA, King KS, Harrington MG. No-reflow phenomenon in the heart and brain[J]. Am J Physiol Heart Circ Physiol, 2018, 315(3):H550-H562.
[7] He B, Ding S, Qiao ZQ, et al. Influence of microvascular dysfunction on regional myocardial deformation post-acute myocardial infarction: insights from a novel angiographic index for assessing myocardial tissue-level reperfusion[J]. Int J Cardiovasc Imaging, 2016, 32(5):711-719.
[8] Ko?uch M, Po?udniewski M, D?browski EJ, et al. Growth differentiation factor 15 as a predictor of the no-reflow phenomenon in patients with ST-segment elevation myocardial infarction[J]. J Clin Med, 2022, 12(1):245.
[9] Vogelzang M, Vlaar PJ, Svilaas T, et al. Computer-assisted myocardial blush quantification after percutaneous coronary angioplasty for acute myocardial infarction: a substudy from the TAPAS trial[J]. Eur Heart J, 2009, 30(5):594-599.
[10] Everaars H, de Waard GA, Driessen RS, et al. Doppler flow velocity and thermodilution to assess coronary flow reserve: a head-to-head comparison with
[15O]H2O PET[J]. JACC Cardiovasc Interv, 2018, 11(20):2044-2054.
[11] Fahrni G, Wolfrum M, De Maria GL, et al. Index of microcirculatory resistance at the time of primary percutaneous coronary intervention predicts early cardiac complications: insights from the OxAMI (Oxford study in acute myocardial infarction) cohort[J]. J Am Heart Assoc, 2017, 6(11):e005409.
[12] De Maria GL, Scarsini R, Shanmuganathan M, et al. Angiography-derived index of microcirculatory resistance as a novel, pressure-wire-free tool to assess coronary microcirculation in ST elevation myocardial infarction[J]. Int J Cardiovasc Imaging, 2020, 36(8):1395-1406.
[13] Scarsini R, Shanmuganathan M, Kotronias RA, et al. Angiography-derived index of microcirculatory resistance (IMRangio) as a novel pressure-wire-free tool to assess coronary microvascular dysfunction in acute coronary syndromes and stable coronary artery disease[J]. Int J Cardiovasc Imaging, 2021, 37(6):1801-1813.
[14] Tu SX, Ding DX, Chang YX, et al. Diagnostic accuracy of quantitative flow ratio for assessment of coronary stenosis significance from a single angiographic view: a novel method based on bifurcation fractal law[J]. Catheter Cardiovasc Interv, 2021, 97 Suppl 2:1040-1047.
[15] Sheng XC, Qiao ZQ, Ge H, et al. Novel application of quantitative flow ratio for predicting microvascular dysfunction after ST-segment-elevation myocardial infarction[J]. Catheter Cardiovasc Interv, 2020, 95Suppl 1:624-632.
[16] Spitaleri G, Brugaletta S, Scalone G, et al. Role of STsegment resolution in patients with ST-segment elevation myocardial infarction treated with primary percutaneous coronary intervention (from the 5-Year outcomes of the EXAMINATION [evaluation of the Xience-V stent in acute myocardial infarction] trial)[J]. Am J Cardiol, 2018, 121(9):1039-1045.
[17] Reindl M, Eitel I, Reinstadler SJ. Role of cardiac magnetic resonance to improve risk prediction following acute STelevation myocardial infarction[J]. J Clin Med, 2020, 9(4):1041.
[18] Lautam?ki R, Schuleri KH, Sasano T, et al. Integration of infarct size, tissue perfusion, and metabolism by hybrid cardiac positron emission tomography/computed tomography: evaluation in a porcine model of myocardial infarction[J]. Circ Cardiovasc Imaging, 2009, 2(4):299-305.
[19] Hausenloy DJ, Kharbanda RK, M?ller UK, et al. Effect of remote ischaemic conditioning on clinical outcomes in patients with acute myocardial infarction (CONDI-2/ERIC-PPCI): a single-blind randomised controlled trial[J]. Lancet, 2019, 394(10207):1415-1424.
[20] Ma M, Wang L, Diao KY, et al. A randomized controlled clinical trial of prolonged balloon inflation during stent deployment strategy in primary percutaneous coronary intervention for ST-segment elevation myocardial infarction: a pilot study[J]. BMC Cardiovasc Disord, 2022, 22(1):30.
[21] Jolly SS, Cairns JA, Yusuf S, et al. Randomized trial of primary PCI with or without routine manual thrombectomy[J]. N Engl J Med, 2015, 372(15):1389-1398.
[22] Egred M, Bagnall A, Spyridopoulos I, et al. Effect of pressurecontrolled intermittent coronary sinus occlusion (PiCSO) on infarct size in anterior STEMI: PiCSO in ACS study[J]. Int J Cardiol Heart Vasc, 2020, 28:100526.
[23] De Maria GL, Alkhalil M, Borlotti A, et al. Index of microcirculatory resistance-guided therapy with pressurecontrolled intermittent coronary sinus occlusion improves coronary microvascular function and reduces infarct size in patients with ST-elevation myocardial infarction: the Oxford Acute Myocardial Infarction-Pressure-controlled Intermittent Coronary Sinus Occlusion study (OxAMI-PICSO study)[J]. EuroIntervention, 2018, 14(3):e352-e359.
[24] Erlinge D, G?tberg M, Lang I, et al. Rapid endovascular catheter core cooling combined with cold saline as an adjunct to percutaneous coronary intervention for the treatment of acute myocardial infarction. The CHILL-MI trial: a randomized controlled study of the use of central venous catheter core cooling combined with cold saline as an adjunct to percutaneous coronary intervention for the treatment of acute myocardial infarction[J].J Am Coll Cardiol, 2014, 63(18):1857-1865.
[25] El Farissi M, Keulards DCJ, van't Veer M, et al. Selective intracoronary hypothermia in patients with ST-elevation myocardial infarction. Rationale and design of the EURO-ICE trial[J]. EuroIntervention, 2021, 16(17):1444-1446.
[26] Shibata N, Takagi K, Morishima I, et al. The impact of the excimer laser on myocardial salvage in ST-elevation acute myocardial infarction via nuclear scintigraphy[J]. Int J Cardiovasc Imaging, 2020, 36(1):161-170.
[27] Qiao SG, Zhao WJ, Li HQ, et al. Necrostatin-1 analog DIMO exerts cardioprotective effect against ischemia reperfusion injury by suppressing necroptosis via autophagic pathway in rats[J]. Pharmacology, 2021, 106(3/4):189-201.
[28] Ali Pour P, Kenney MC, Kheradvar A. Bioenergetics consequences of mitochondrial transplantation in cardiomyocytes[J]. J Am Heart Assoc, 2020, 9(7):e014501.
[29] Kaul S, Methner C, Cao ZP, et al. Mechanisms of the "noreflow" phenomenon after acute myocardial infarction: potential role of pericytes[J]. JACC Basic Transl Sci, 2022, 8(2):204-220.

备注/Memo

备注/Memo:
通信作者:张静, E-mail:bzyyzhangjing@163.com
更新日期/Last Update: 2023-11-20