索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]栾玉玲,张凌霄,邢丽娜,等.心脏类器官的构建及应用[J].国际心血管病杂志,2023,06:350-353.
点击复制

心脏类器官的构建及应用(PDF)

《国际心血管病杂志》[ISSN:1006-6977/CN:61-1281/TN]

期数:
2023年06期
页码:
350-353
栏目:
综述
出版日期:
2023-11-20

文章信息/Info

Title:
-
作者:
栾玉玲张凌霄邢丽娜法菁菁刘宗军
200062 上海中医药大学附属普陀医院心内科
Author(s):
-
关键词:
心脏类器官多能干细胞心血管疾病
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-6583.2023.06.004
文献标识码:
-
摘要:
心脏类器官可在体外精确模拟机体的病理生理改变,弥补细胞模型与动物实验 无法准确模拟机体代谢的不足,在疾病机制探索与药物开发方面有广泛的应用优势与前景。 该文主要介绍心脏类器官的构建方法和应用及其优势和面临的挑战,为心脏类器官在生物医 学和疾病治疗领域的研究提供新的思路。
Abstract:
-

参考文献/References

[1] Rossi G, Manfrin A, Lutolf MP. Progress and potential in organoid research[J]. Nat Rev Genet, 2018, 19(11):671-687.
[2] Corrò C. Novellasdemunt L, Li VSW. A brief history of organoids[J]. Am J Physiol Cell Physiol, 2020, 319(1):C151-C165.
[3] Lehmann R, Lee CM, Shugart EC, et al. Human organoids: a new dimension in cell biology[J]. Mol Biol Cell, 2019, 30(10):1129-1137.
[4] Mollica PA, Booth-Creech EN, Reid JA, et al. 3D bioprinted mammary organoids and tumoroids in human mammary derived ECM hydrogels[J]. Acta Biomater, 2019, 95:201-213.
[5] Liu HT, Wang YQ, Cui KL, et al. Advances in hydrogels in organoids and organs-on-a-chip[J]. Advanced Materials, 2019, 31(50):e1902042.
[6] Hirt MN, Hansen A, Eschenhagen T. Cardiac tissue engineering: state of the art[J]. Circ Res, 2014, 114(2):354- 367.
[7] Weinberger F, Mannhardt I, Eschenhagen T. Engineering cardiac muscle tissue: a maturating field of research[J]. Circ Res, 2017, 120(9):1487-1500.
[8] Wei Z, Schnellmann R, Pruitt HC, et al. Hydrogel network dynamics regulate vascular morphogenesis[J]. Cell Stem Cell, 2020, 27(5):798-812.
[9] Shkumatov A, Baek K, Kong H. Matrix rigidity-modulated cardiovascular organoid formation from embryoid bodies[J]. PLoS One, 2014, 9(4):e94764.
[10] Ahadian S, Yamada S, Ramón-Azcón J, et al. Hybrid hydrogel-aligned carbon nanotube scaffolds to enhance cardiac differentiation of embryoid bodies[J]. Acta Biomater, 2016, 31:134-143.
[11] Astashkina AI, Mann BK, Prestwich GD, et al. A 3-D organoid kidney culture model engineered for high-throughput nephrotoxicity assays[J]. Biomaterials, 2012, 33(18):4700- 4711.
[12] Yi SA, Zhang YX, Rathnam C, et al. Bioengineering approaches for the advanced organoid research[J]. Adv Mater, 2021, 33(45):e2007949.
[13] Wu FX, Gao AJ, Liu J, et al. High modulus conductive hydrogels enhance in vitro maturation and contractile function of primary cardiomyocytes for uses in drug screening[J]. Adv Healthc Mater, 2018, 7(24):e1800990.
[14] Noor N, Shapira A, Edri R, et al. 3D printing of personalized thick and perfusable cardiac patches and hearts[J]. Adv Sci(Weinh), 2019, 6(11):1900344.
[15] Lee A, Hudson AR, Shiwarski DJ, et al. 3D bioprinting of collagen to rebuild components of the human heart[J]. Science, 2019, 365(6452):482-487.
[16] Zhang F, Qu KY, Zhou B, et al. Design and fabrication of an integrated heart-on-a-chip platform for construction of cardiac tissue from human iPSC-derived cardiomyocytes and in situ evaluation of physiological function[J]. Biosens Bioelectron, 2021, 179:113080.
[17] Ugolini GS, Visone R, Cruz-Moreira D, et al. Generation of functional cardiac microtissues in a beating heart-on-a-chip[J]. Methods Cell Biol, 2018, 146:69-84.
[18] Cho KW, Lee WH, Kim BS, et al. Sensors in heart-on-a-chip: a review on recent progress[J]. Talanta, 2020, 219:121269.
[19] Grosberg A, Alford PW, McCain ML, et al. Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip[J]. Lab Chip, 2011, 11(24):4165-4173.
[20] Jayne RK, Karakan M?, Zhang KH, et al. Direct laser writing for cardiac tissue engineering: a microfluidic heart on a chip with integrated transducers[J]. Lab Chip, 2021, 21(9):1724- 1737.
[21] Luni C, Gagliano O, Elvassore N. Derivation and differentiation of human pluripotent stem cells in microfluidic devices[J]. Annu Rev Biomed Eng, 2022, 24:231-248.
[22] Fu F, Chen Z, Zhao Z, et al. Bio-inspired self-healing structural color hydrogel[J]. Proc Natl Acad Sci U S A, 2017, 114(23):5900-5905.
[23] Sun L, Chen Z, Xu D, et al. Electroconductive and anisotropic structural color hydrogels for visual heart-on-a-chip construction[J]. Adv Sci (Weinh), 2022, 9(16):e2105777.
[24] Shang YX, Chen ZY, Fu FF, et al. Cardiomyocyte-Driven structural color actuation in anisotropic inverse opals[J]. ACS Nano, 2019, 13(1):796-802.
[25] Shinnawi R, Shaheen N, Huber I, et al. Modeling reentry in the short QT syndrome with human-induced pluripotent stem cell-derived cardiac cell sheets[J]. J Am Coll Cardiol, 2019, 73(18):2310-2324.
[26] Hofbauer P, Jahnel SM, Papai N, et al. Cardioids reveal selforganizing principles of human cardiogenesis[J]. Cell, 2021, 184(12):3299-3317.e22.
[27] Bleijs M, van de Wetering M, Clevers H, et al. Xenograft and organoid model systems in cancer research[J]. EMBO J, 2019, 38(15):e101654.
[28] Mills RJ, Parker BL, Quaife-Ryan GA, et al. Drug screening in human PSC-Cardiac organoids identifies pro-proliferative compounds acting via the mevalonate pathway[J]. Cell Stem Cell, 2019, 24(6):895-907.
[29] Lemme M, Ulmer BM, Lemoine MD, et al. Atrial-like engineered heart tissue: an in vitro model of the human atrium[J]. Stem Cell Reports, 2018, 11(6):1378-1390.
[30] Takeda M, Miyagawa S, Fukushima S, et al. Development of in vitro drug-induced cardiotoxicity assay by using threedimensional cardiac tissues derived from human induced pluripotent stem cells[J]. Tissue Eng Part C Methods, 2018, 24(1):56-67.
[31] 范斯文, 赵玉涵, 肖光旭, 等. 3D类器官心脏肥大模型的建 立及在心血管病治疗中药作用机制解析中的应用[J]. 药学 学报, 2022, 57(10):3067-3076.
[32] Wang TY, Chen XN, Yu JH, et al. High-throughput electrophysiology screen revealed cardiotoxicity of strychnine by selectively targeting hERG Channel[J]. Am J Chin Med, 2018, 46(8):1825-1840.
[33] Becker N, Stoelzle S, G?pel S, et al. Minimized cell usage for stem cell-derived and primary cells on an automated patch clamp system[J]. J Pharmacol Toxicol Methods, 2013, 68(1):82-87.

备注/Memo

备注/Memo:
基金项目:上海市“科技创新行动计划”医学创新研究专项 (21Y11909600) ;上海市普陀区卫生健康系统临床医学学科项目 (2023ysxk01)
通信作者:刘宗军, E-mail:lzj72@126.com
更新日期/Last Update: 2023-11-20