索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]袁群凯,张群吉,侯经远,等.N6- 腺苷酸甲基化修饰在心血管疾病中的研究进展[J].国际心血管病杂志,2023,06:337-340,349.
点击复制

N6- 腺苷酸甲基化修饰在心血管疾病中的研究进展(PDF)

《国际心血管病杂志》[ISSN:1006-6977/CN:61-1281/TN]

期数:
2023年06期
页码:
337-340,349
栏目:
综述
出版日期:
2023-11-20

文章信息/Info

Title:
-
作者:
袁群凯张群吉侯经远钟志雄
514021 广东医科大学梅州临床医学院心血管内 科(袁群凯,钟志雄);514031 梅州市人民医院科研实验中心, 梅州市医学科学院心血管病研究所(张群吉,候经远)
Author(s):
-
关键词:
心血管疾病N6- 腺苷酸甲基化转录后修饰
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-6583.2023.06.001
文献标识码:
-
摘要:
N6- 腺苷酸甲基化(m6A)是真核生物mRNA 最常见的转录后修饰,是一种动 态可逆的过程。m6A 受甲基化酶、去甲基化酶及甲基化阅读蛋白的调节,参与多种基因表达 调控和疾病的病理过程。随着测序技术的发展,m6A 在心血管疾病中的研究逐渐增多。该 文介绍m6A 在心血管疾病中的相关研究,探讨其在心血管疾病发生中的作用及可能机制。
Abstract:
-

参考文献/References

[1] Wu S, Zhang S, Wu X, et al. m6A RNA methylation in cardiovascular diseases[J]. Mol Ther, 2020, 28(10):2111-2119.
[2] Chen J, Wei X, Yi X, et al. RNA modification by m6A methylation in cardiovascular disease[J]. Oxid Med Cell Longev, 2021, 2021:8813909.
[3] Zaccara S, Ries RJ, Jaffrey SR. Reading, writing and erasing mRNA methylation[J]. Nat Rev Mol Cell Biol, 2019, 20(10):608-624.
[4] Yang Y, Hsu PJ, Chen YS, et al. Dynamic transcriptomic m6A decoration: writers, erasers, readers and functions in RNA metabolism[J]. Cell Res, 2018, 28(6):616-624.
[5] Jiang X, Liu B, Nie Z, et al. The role of m6A modification in the biological functions and diseases[J]. Signal Transduct Target Ther, 2021, 6(1):74.
[6] Aoyama T, Yamashita S, Tomita K. Mechanistic insights into m6A modification of U6 snRNA by human METTL16[J]. Nucleic Acids Res, 2020, 48(9):5157-5168.
[7] Pinto R, V?gb? CB, Jakobsson ME, et al. The human methyltransferase ZCCHC4 catalyses N6-methyladenosine modification of 28S ribosomal RNA[J]. Nucleic Acids Res, 2020, 48(2):830-846.
[8] Peters T, Ausmeier K, Rüther U. Cloning of Fatso (Fto), a novel gene deleted by the Fused toes (Ft) mouse mutation[J]. Mamm Genome, 1999, 10(10):983-986.
[9] Jia GF, Fu Y, Zhao X, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO[J]. Nat Chem Biol, 2011, 7(12):885-887.
[10] Huang HL, Weng HY, Sun WJ, et al. Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation[J]. Nat Cell Biol, 2018, 20(3):285- 295.
[11] Oparil S, Zaman MA, Calhoun DA. Pathogenesis of hypertension[J]. Ann Intern Med, 2003, 139(9):761-776.
[12] Luo XT, Li HQ, Liang JQ, et al. RMVar: an updated database of functional variants involved in RNA modifications[J]. Nucleic Acids Res, 2021, 49(D1):D1405-D1412.
[13] Mo XB, Lei SF, Zhang YH, et al. Examination of the associations between m6A-associated single-nucleotide polymorphisms and blood pressure[J]. Hypertens Res, 2019, 42(10):1582-1589.
[14] Wu QB, Yuan XC, Han RQ, et al. Epitranscriptomic mechanisms of N6-methyladenosine methylation regulating mammalian hypertension development by determined spontaneously hypertensive rats pericytes[J]. Epigenomics, 2019, 11(12):1359-1370.
[15] Liu M, Xu KM, Saaoud F, et al. 29 m6A-RNA methylation (epitranscriptomic) regulators are regulated in 41 diseases including atherosclerosis and tumors potentially via ROS regulation—102 transcriptomic dataset analyses[J]. J Immunol Res, 2022, 2022:1433323.
[16] Huangfu N, Zheng WY, Xu ZY, et al. RBM4 regulates M1 macrophages polarization through targeting STAT1-mediated glycolysis[J]. Int Immunopharmacol, 2020, 83:106432.
[17] Liu YH, Liu ZJ, Tang H, et al. The N6-methyladenosine (m6A)-forming enzyme METTL3 facilitates M1 macrophage polarization through the methylation of STAT1 mRNA[J]. Am J Physiol Cell Physiol, 2019, 317(4):C762-C775.
[18] Yu RQ, Li QM, Feng ZH, et al. m6A reader YTHDF2 regulates LPS-induced inflammatory response[J]. Int J Mol Sci, 2019, 20(6):1323.
[19] Dong G, Yu J, Shan G, et al. N6-methyladenosine methyltransferase METTL3 promotes angiogenesis and atherosclerosis by upregulating the JAK2/STAT3 pathway via m6A reader IGF2BP1[J]. Front Cell Dev Biol, 2021, 9: 731810.
[20] Shi X, Cao Y, Zhang X, et al. Comprehensive analysis of N6-methyladenosine RNA methylation regulators expression identify distinct molecular subtypes of myocardial infarction[J]. Front Cell Dev Biol, 2021, 9:756483.
[21] Ye F, Wang XY, Tu S, et al. The effects of NCBP3 on METTL3-mediated m6A RNA methylation to enhance translation process in hypoxic cardiomyocytes[J]. J Cell Mol Med, 2021, 25(18):8920-8928.
[22] Yao MD, Jiang Q, Ma Y, et al. Role of METTL3-dependent N6-methyladenosine mRNA modification in the promotion of angiogenesis[J]. Mol Ther, 2020, 28(10):2191-2202.
[23] Zhao YC, Hu JJ, Sun XL, et al. Loss of m6A demethylase ALKBH5 promotes post-ischemic angiogenesis via posttranscriptional stabilization of WNT5A[J]. Clin Transl Med, 2021, 11(5):e402.
[24] Kumari R, Dutta R, Ranjan P, et al. ALKBH5 regulates SPHK1-dependent endothelial cell angiogenesis following ischemic stress[J]. Front Cardiovasc Med, 2022, 8:817304.
[25] Wang XW, Guo ZK, Ding ZF, et al. Inflammation, autophagy, and apoptosis after myocardial infarction[J]. J Am Heart Assoc, 2018, 7(9):e008024.
[26] Song HW, Feng X, Zhang H, et al. METTL3 and ALKBH5 oppositely regulate m6A modification of TFEB mRNA, which dictates the fate of hypoxia/reoxygenation-treated cardiomyocytes[J]. Autophagy, 2019, 15(8):1419-1437.
[27] Li TT, Zhuang YT, Yang WQ, et al. Silencing of METTL3 attenuates cardiac fibrosis induced by myocardial infarction via inhibiting the activation of cardiac fibroblasts[J]. FASEB J, 2021, 35(2):e21162.
[28] Hausenloy DJ, Yellon DM. Myocardial ischemia-reperfusion injury: a neglected therapeutic target[J]. J Clin Invest, 2013, 123(1):92-100.
[29] Mukherjee D, Bercz LS, Torok MA, et al. Regulation of cellular immunity by activating transcription factor 4[J]. Immunol Lett, 2020, 228:24-34.
[30] Wang JY, Zhang JH, Ma Y, et al. WTAP promotes myocardial ischemia/reperfusion injury by increasing endoplasmic reticulum stress via regulating m6A modification of ATF4 mRNA[J]. Aging, 2021, 13(8):11135-11149.
[31] Pang P, Qu ZZ, Yu ST, et al. Mettl14 attenuates cardiac ischemia/reperfusion injury by regulating Wnt1/β-Catenin signaling pathway[J]. Front Cell Dev Biol, 2021, 9:762853.
[32] Choy MT, Xue RC, Wu YZ, et al. Role of N6-methyladenosine modification in cardiac remodeling[J]. Front Cardiovasc Med, 2022, 9:774627.
[33] Xu HF, Wang Z, Chen M, et al. YTHDF2 alleviates cardiac hypertrophy via regulating Myh7 mRNA decoy[J]. Cell Biosci, 2021, 11(1):132.
[34] Dorn LE, Lasman L, Chen J, et al. The N6-methyladenosine mRNA methylase METTL3 controls cardiac homeostasis and hypertrophy[J]. Circulation, 2019, 139(4):533-545.
[35] Mathiyalagan P, Adamiak M, Mayourian J, et al. FTOdependent N6-methyladenosine regulates cardiac function during remodeling and repair[J]. Circulation, 2019, 139(4):518-532.
[36] Hinger SA, Wei J, Dorn LE, et al. Remodeling of the m6A landscape in the heart reveals few conserved post-transcriptional events underlying cardiomyocyte hypertrophy[J]. J Mol Cell Cardiol, 2021, 151:46-55.
[37] Zhou X, Chen Z, Zhou J, et al. Transcriptome and N6-methyladenosine RNA methylome analyses in aortic dissection and normal human aorta[J]. Front Cardiovasc Med, 2021, 8:627380.
[38] Ren J, Wu NN, Wang SY, et al. Obesity cardiomyopathy: evidence, mechanisms, and therapeutic implications[J]. Physiol Rev, 2021, 101(4):1745-1807.
[39] Xu ZJ, Qin Y, Lv BB, et al. Intermittent fasting improves highfat diet-induced obesity cardiomyopathy via alleviating lipid deposition and apoptosis and decreasing m6A methylation in the heart[J]. Nutrients, 2022, 14(2):251.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(82002216)
通信作者:钟志雄, E-mail:zhongzhixiong@mzrmyy.com
更新日期/Last Update: 2023-11-20