索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]王文琦,张涛.糖尿病与微血管性心绞痛[J].国际心血管病杂志,2023,02:74-77.
点击复制

糖尿病与微血管性心绞痛(PDF)

《国际心血管病杂志》[ISSN:1006-6977/CN:61-1281/TN]

期数:
2023年02期
页码:
74-77
栏目:
综述
出版日期:
2023-03-20

文章信息/Info

Title:
-
作者:
王文琦张涛
121001 锦州医科大学附属第一医院
Author(s):
-
关键词:
糖尿病微血管性心绞痛冠脉微循环微血管病变
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-6583.2023.02.003
文献标识码:
-
摘要:
微血管病变是糖尿病的慢性特异性并发症。糖尿病可通过诱导炎性反应、氧化 应激等途径破坏血管内皮完整性,进而导致微循环功能障碍,引发微血管性心绞痛。该文介 绍糖尿病与微血管性心绞痛相关性的研究进展。
Abstract:
-

参考文献/References

[1] Shome JS, Perera D, Plein S, et al. Current perspectives in coronary microvascular dysfunction[J]. Microcirculation, 2017, 24(1):e12340.
[2] Knuuti J, Wijns W, Saraste A, et al. 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes[J]. Eur Heart J, 2020, 41(3):407-477.
[3] Ma RCW. Epidemiology of diabetes and diabetic complications in China[J]. Diabetologia, 2018, 61(6):1249-1260.
[4] 王富军, 王文琦. 《中国2型糖尿病防治指南(2020年版)》 解读[J]. 河北医科大学学报, 2021, 24(12):1365-1371.
[5] 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020 年版)[J]. 中华糖尿病杂志, 2021, 13(4):315-409.
[6] Kibel A, Selthofer-Relatic K, Drenjancevic I, et al. Coronary microvascular dysfunction in diabetes mellitus[J]. J Int Med Res, 2017, 45(6):1901-1929.
[7] 李艳杰, 褚瑜光, 倪青. 糖尿病性冠状动脉微血管病变 致心肌梗死1例[J]. 中西医结合心脑血管病杂志, 2022, 20(5):954-957.
[8] Suda A, Takahashi J, Beltrame JF, et al. International prospective cohort study of microvascular angina—rationale and design[J]. Int J Cardiol Heart Vasc, 2020, 31:100630.
[9] Taqueti VR, Carli M. Coronary microvascular disease pathogenic mechanisms and therapeutic options: JACC Stateof- the-Art review [J]. J Am Coll Cardiol, 2018, 72(21):2625- 2641.
[10] Reriani M, Flammer AJ, Duhé J, et al. Coronary endothelial function testing may improve long-term quality of life in subjects with microvascular coronary endothelial dysfunction[J]. Open Heart, 2019, 6(1):e000870.
[11] Sun D, Wang J, Toan S, et al. Molecular mechanisms of coronary microvascular endothelial dysfunction in diabetes mellitus: focus on mitochondrial quality surveillance[J]. Angiogenesis, 2022, 25(3):307-329.
[12] Gustafson D, Veitch S, Fish JE. Extracellular vesicles as protagonists of diabetic cardiovascular pathology[J]. Front Cardiovasc Med, 2017, 4:71.
[13] Mao L, Liu SM, Hu L, et al. MiR-30 family: a promising regulator in development and disease[J]. Biomed Res Int, 2018, 2018:9623412.
[14] Veitch S, Njock MS, Chandy M, et al. MiR-30 promotes fatty acid beta-oxidation and endothelial cell dysfunction and is a circulating biomarker of coronary microvascular dysfunction in pre-clinical models of diabetes[J]. Cardiovasc Diabetol, 2022, 21(1):31.
[15] Ahmad A, Corban MT, Toya T, et al. Coronary microvascular endothelial dysfunction in patients with angina and nonobstructive coronary artery disease is associated with elevated serum homocysteine levels[J]. J Am Heart Assoc, 2020, 9(19):e017746.
[16] Yu C, Wang J, Wang F, et al. Inverse association between plasma homocysteine concentrations and type 2 diabetes mellitus among a middle-aged and elderly Chinese population[J]. Nutr Metab Cardiovasc Dis, 2018, 28(3):278-284.
[17] Markousis-Mavrogenis G, Bacopoulou F, Mavragani C, et al. Coronary microvascular disease: the "meeting point" of cardiology, rheumatology and endocrinology[J]. Eur J Clin Invest, 2022, 52(5):e13737.
[18] Vancheri F, Longo G, Vancheri S, et al. Coronary microvascular dysfunction[J]. J Clin Med, 2020, 9(9):2880.
[19] 汤月霞, 伍锋. 冠状动脉微血管疾病的研究进展[J]. 中西医 结合心脑血管病杂志, 2021, 19(17):2955-2959.
[20] De Bruyne B, Pijls NHJ, Gallinoro E, et al. Microvascular resistance reserve for assessment of coronary microvascular function: JACC Technology Corner[J]. J Am Coll Cardiol, 2021, 78(15):1541-1549.
[21] Gallinoro E, Paolisso P, Candreva A, et al. Microvascular dysfunction in patients with type Ⅱ diabetes mellitus: invasive assessment of absolute coronary blood flow and microvascular resistance reserve[J]. Front Cardiovasc Med, 2021, 8:765071.
[22] Liu ZW, Zhu HT, Ma YP, et al. AGEs exacerbates coronary microvascular dysfunction in NoCAD by activating endoplasmic reticulum stress-mediated PERK signaling pathway[J]. Metabolism, 2021, 117:154710.
[23] Pinto RS, Minanni CA, de Araújo Lira AL, et al. Advanced glycation end products: a sweet flavor that embitters cardiovascular disease[J]. Int J Mol Sci, 2022, 23(5):2404.
[24] 唐莉莉, 姚道阔, 王萍, 等. 糖尿病与冠状动脉微循环障碍的 研究进展[J]. 医学综述, 2018, 24(13):2497-2501.
[25] ?imen T, Efe TH, Akyel A, et al. Human endothelial cellspecific molecule-1 (endocan) and coronary artery disease and microvascular angina[J]. Angiology, 2016, 67(9):846-853.
[26] Elimam H, Abdulla AM, Taha IM. Inflammatory markers and control of type 2 diabetes mellitus[J]. Diabetes Metab Syndr, 2019, 13(1):800-804.
[27] Hayfron-Benjamin CF, Maitland-van der Zee AH, van den Born BJ, et al. Association between C reactive protein and microvascular and macrovascular dysfunction in sub-Saharan Africans with and without diabetes: the RODAM study[J]. BMJ Open Diabetes Res Care, 2020, 8(1):e001235.
[28] Qian X, He SY, Wang JP, et al. Prediction of 10-year mortality using hs-CRP in Chinese people with hyperglycemia: findings from the Da Qing diabetes prevention outcomes study[J]. Diabetes Res Clin Pract, 2021, 173:108668.
[29] Khattab MH, Shahwan MJ, Hassan NAGM, et al. Abnormal high-sensitivity C-reactive protein is associated with an increased risk of cardiovascular disease and renal dysfunction among patients diagnosed with type 2 diabetes mellitus in Palestine[J]. Rev Diabet Stud, 2022, 18(1):27-33.
[30] Long M, Huang ZB, Zhuang XD, et al. Association of inflammation and endothelial dysfunction with coronary microvascular resistance in patients with cardiac syndrome X[J]. Arq Bras Cardiol, 2017, 109(5):397-403.
[31] 陈雪瑾, 祁春梅, 金静静. 糖化血红蛋白与冠状动脉微血 管心绞痛的关系研究[J]. 实用心脑肺血管病杂志, 2020, 28(6):28-35.
[32] Arman Y, Akpinar TS, Kose M, et al. Effect of glycemic regulation on endocan levels in patients with diabetes: a preliminary study[J]. Angiology, 2016, 67(3):239-244.
[33] Balamir I, Ates I, Topcuoglu C, et al. Association of endocan, ischemia-modified albumin, and hsCRP levels with endothelial dysfunction in type 2 diabetes mellitus[J]. Angiology, 2018, 69(7):609-616.
[34] Singh AD, Kulkarni YA. Vascular adhesion protein-1 and microvascular diabetic complications[J]. Pharmacol Rep, 2022, 74(1):40-46.
[35] Yozgatli K, Lefrandt JD, Noordzij MJ, et al. Accumulation of advanced glycation end products is associated with macrovascular events and glycaemic control with microvascular complications in Type 2 diabetes mellitus[J]. Diabet Med, 2018, 35(9):1242-1248.
[36] Duque A, Mediano MFF, De Lorenzo A, et al. Cardiovascular autonomic neuropathy in diabetes: pathophysiology, clinical assessment and implications[J]. World J Diabetes, 2021, 12(6):855-867.
[37] Romero SA, Ortin A, Mercado N, et al. Frequency and associated risk factors of cardiovascular autonomic neuropathy among patients with type 2 Diabetes[J]. Rev Fac Cien Med Univ Nac Cordoba, 2018, 75(2):111-118.
[38] Lai YR, Huang CC, Chiu WC, et al. HbA1C variability is strongly associated with the severity of cardiovascular autonomic neuropathy in patients with type 2 diabetes after longer diabetes duration[J]. Front Neurosci, 2019, 13:458.
[39] 田浩明, 李舍予. 长期血糖控制与糖尿病慢性血管并发症: 循证治疗三十年[J]. 中华糖尿病杂志, 2016, 8(11):641-644.
[40] 邓荣花. 尼可地尔治疗微血管性心绞痛的临床疗效及对血 管内皮功能的影响[J]. 中西医结合心脑血管病杂志, 2022, 20(10):1834-1837.
[41] 陈彬, 刘华, 张永军, 等. 尼可地尔对微血管性心绞痛患者 hsCRP、sCD40L水平的影响及临床疗效[J]. 心血管康复医 学杂志, 2018, 27(3):296-299.

备注/Memo

备注/Memo:
通信作者:张涛, E-mail:13897853084@163.com
更新日期/Last Update: 2023-03-20