Index was outside the bounds of the array.
[1] Hamet P, Tremblay J. Artificial intelligence in medicine[J].
Metabolism, 2017, 69S:S36-S40.
[2] Mintz Y, Brodie R. Introduction to artificial intelligence in
medicine[J]. Minim Invasive Ther Allied Technol, 2019,
28(2):73-81.
[3] Howard J. Artificial intelligence: implications for the future of
work[J]. Am J Ind Med, 2019. 62(11):917-926.
[4] Jiang F, Jiang Y, Zhi H, et al. Artificial intelligence in
healthcare: past, present and future[J]. Stroke Vasc Neurol,
2017, 2(4):230-243.
[5] 张远望. 人工智能与应用[J]. 中国科技纵横, 2015, 20:22.
[6] 黄刚, 余秀琼, 刘汉雄, 等. 心血管病领域人工智能的应用及
展望[J]. 中华医学杂志, 2020, 100(45):3649-52.
[7] Wang S, Zhang S, Li Z, et al. Automatic digital ECG signal
extraction and normal QRS recognition from real scene
ECG images[J]. Comput Methods Programs Biomed, 2020,
187:105254.
[8] Costa CM, Silva IS, de Sousa RD, et al. The association
between reconstructed phase space and artificial neural
networks for vectorcardiographic recognition of myocardial
infarction[J]. J Electrocardiol, 2018, 51(3):443-449.
[9] Han C, Shi L. ML-ResNet: anovel network to detect and
locate myocardial infarction using 12 leads ECG[J]. Comput
Methods Programs Biomed, 2020, 185:105138.
[10] Attia ZI, Kapa S, Lopez-Jimenez F, et al. Screening for cardiac
contractile dysfunction using an artificial intelligence-enabled
electrocardiogram[J]. Nat Med, 2019, 25(1):70-74.
[11] Zamorano JL, Pinto FJ, Solano-López J, et al. The year in
cardiovascular medicine 2020: imaging[J]. Eur Heart J, 2021,
42(7):740-749.
[12] Ghorbani A, Ouyang D, Abid A, et al. Deep learning
interpretation of echocardiograms[J]. NPJ Digit Med, 2020, 3:10.
[13] Tamborini G, Piazzese C, Lang RM, et al. Feasibility and
accuracy of automated software for transthoracic threedimensional
left ventricular volume and function analysis:
comparisons with two-dimensional echocardiography, threedimensional
transthoracic manual method, and cardiac
magnetic resonance imaging[J]. J Am Soc Echocardiogr, 2017,
30(11):1049-1058.
[14] Han D, Lee JH, Rizvi A, et al. Incremental role of resting
myocardial computed tomography perfusion for predicting
physiologically significant coronary artery disease: a machine
learning approach[J]. J Nucl Cardiol, 2018, 25(1):223-233.
[15] Dey D, Gaur S, Ovrehus KA, et al. Integrated prediction
of lesion-specific ischaemia from quantitative coronary CT
angiography using machine learning: a multicentre study[J].
Eur Radiol, 2018, 28(6):2655-2664.
[16] Busse A, Rajagopal R, Yücel S, et al. Cardiac MRI-update
2020[J]. Radiologe, 2020, 60(Suppl 1):33-40.
[17] Kim PK, Hong YJ, Im DJ, et al. Myocardial T1 and T2
mapping: techniques and clinical applications[J]. Korean J
Radiol, 2017, 18(1):113-131.
[18] Sharma A, Okada DR, Yacoub H, et al. Diagnosis of cardiac
sarcoidosis: an era of paradigm shift[J]. Ann Nucl Med, 2020,
34(2):87-93.
[19] Brown LAE, Onciul SC, Broadbent DA, et al. Fully
automated, inline quantification of myocardial blood flow
with cardiovascular magnetic resonance: repeatability of
measurements in healthy subjects[J]. J Cardiovasc Magn
Reson, 2018, 20(1):48.
[20] Cho H, Lee JG, Kang SJ, et al. Angiography-based machine
learning for predicting fractional flow reserve in intermediate
coronary artery lesions[J]. J Am Heart Assoc, 2019,
8(4):e011685.
[21] Jun TJ, Kang SJ, Lee JG, et al. Automated detection of
vulnerable plaque in intravascular ultrasound images[J]. Med
Biol Eng Comput, 2019, 57(4):863-876.
[22] Nam HS, Kim CS, Lee JJ, et al. Automated detection of vessel
lumen and stent struts in intravascular optical coherence
tomography to evaluate stent apposition and neointimal
coverage[J]. Med Phys, 2016, 43(4):1662.
[23] From the American Association of Neurological Surgeons
(AANS), American Society of Neuroradiology (ASNR),
Cardiovascular and Interventional Radiology Society of
Europe (CIRSE), et al. Multisociety consensus quality
improvement revised consensus statement for endovascular
therapy of acute ischemic stroke[J]. Int J Stroke, 2018,
13(6):612-632.
[24] Swaminathan RV, Rao SV. Robotic-assisted transradial
diagnostic coronary angiography[J]. Catheter Cardiovasc
Interv, 2018 , 92(1):54-57.
[25] Lo N, Gutierrez JA, Swaminathan RV. Robotic-assisted
percutaneous coronary intervention[J]. Curr Treat Options
Cardiovasc Med, 2018, 20(2):14.
[26] Cho IJ, Sung JM, Kim HC, et al. Development and external
validation of a deep learning algorithm for prognostication of
cardiovascular outcomes[J]. Korean Circ J, 2020, 50(1):72-84.
[27] Sung JM, Cho IJ, Sung D, et al. Development and verification
of prediction models for preventing cardiovascular diseases[J].
PLoS One, 2019, 14(9):e0222809.
[28] Motwani M, Dey D, Berman DS, et al. Machine learning for
prediction of all-cause mortality in patients with suspected
coronary artery disease: a 5-year multicentre prospective
registry analysis[J]. Eur Heart J, 2017, 38(7):500-507.
[29] Lacson RC, Baker B, Suresh H, et al. Use of machinelearning
algorithms to determine features of systolic blood
pressure variability that predict poor outcomes in hypertensive
patients[J]. Clin Kidney J, 2018, 12(2):206-212.
[30] Harish V, Morgado F, Stern AD, et al. Artificial intelligence
and clinical decision making: the new nature of medical
uncertainty[J]. Acad Med, 2021, 96(1):31-36.
[31] Strianese O, Rizzo F, Ciccarelli M, et al. Precision and
personalized medicine: how genomic approach improves
the management of cardiovascular and neurodegenerative
disease[J]. Genes (Basel), 2020, 11(7):747.
[32] Obermeyer Z, Emanuel EJ. Predicting the future - big data,
machine learning, and clinical medicine[J]. N Engl J Med,
2016, 375(13):1216-1219.
[33] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015,
521(7553):436-44.
[34] Yu KH, Beam AL, Kohane IS. Artificial intelligence in
healthcare[J]. Nat Biomed Eng, 2018, 2(10):719-731.