索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]杨泽俊,王田田,尚宏伟,等.肠道菌群代谢产物与脑-肠-骨髓轴在高血压调节中的作用[J].国际心血管病杂志,2021,01:17-21.
点击复制

肠道菌群代谢产物与脑-肠-骨髓轴在高血压调节中的作用(PDF)

《国际心血管病杂志》[ISSN:1006-6977/CN:61-1281/TN]

期数:
2021年01期
页码:
17-21
栏目:
综述
出版日期:
2021-01-20

文章信息/Info

Title:
-
作者:
杨泽俊王田田尚宏伟路欣李利生徐敬东
100069 北京,首都医科大学基础医学院生理学与病理生理学系(杨泽俊,王田田,徐敬东),形态学实验中心(尚宏伟,路欣),机能实验中心(李利生)
Author(s):
-
关键词:
肠道菌群 高血压 短链脂肪酸 脑-肠-骨髓轴 小胶质细胞
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-6583.2021.01.005
文献标识码:
-
摘要:
短链脂肪酸是肠道菌群重要的代谢产物,可以作用于体内其他组织或细胞上的GPR41和Olfr78等G蛋白偶联受体,产生降低或升高血压的作用。同时,脑、肠、骨髓之间通过小胶质细胞、促炎性细胞因子、短链脂肪酸、造血干/祖细胞等相互联系,形成脑-肠-骨髓轴调节网络,共同对血压进行调控
Abstract:
-

参考文献/References

[1] Xue B, Yu Y, Zhang Z, et al. Central renin-angiotensin system activation and inflammation induced by high-fat diet sensitize angiotensin Ⅱ-elicited hypertension[J]. Hypertension, 2016, 67(1):163-170.
[2] Honour J. The possible involvement of intestinal bacteria in steroidal hypertension[J]. Endocrinology, 1982, 110(1):285-287.
[3] Trompette A, Gollwitzer ES, Yadava K, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis[J]. Nat Med, 2014, 20(2):159-166.
[4] Yang T, Magee KL, Colon-perez LM, et al. Impaired butyrate absorption in the proximal colon, low serum butyrate and diminished central effects of butyrate on blood pressure in spontaneously hypertensive rats[J]. Acta Physiol(Oxf), 2019, 226(2):e13256.
[5] Wanchai K, Pongchaidecha A, Chatsudthipong V, et al. Role of gastrointestinal microbiota on kidney injury and the obese condition[J]. Am J Med Sci, 2017, 353(1):59-69.
[6] Pluznick JL, Protzko RJ, Gevorgyan H, et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation[J]. Proc Natl Acad Sci U S A, 2013, 110(11):4410-4415.
[7] Touyz RM, Camargo LL. Microglia, the missing link in the brain-gut-hypertension axis[J]. CircRes, 2019, 124(5):671-673.
[8] Mortensen FV, Nielsen H, Mulvany MJ, et al. Short chain fatty acids dilate isolated human colonic resistance arteries[J]. Gut, 1990, 31(12):1391-1394.
[9] Brown AJ, Goldsworthy SM, Barnes AA, et al. The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids[J]. J Biol Chem, 2003, 278(13):11312-11319.
[10] Natarajan N, Hori D, Flavahan S, et al. Microbial short chain fatty acid metabolites lower blood pressure via endothelial G protein-coupled receptor 41[J]. Physiol Genomics, 2016, 48(11):826-834.
[11] Pluznick JL. Microbial short-chain fatty acids and blood pressure tegulation[J]. Curr Hypertens Rep, 2017, 19(4):25.
[12] Kimura I, Inoue D, Maeda T, et al. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41(GPR41)[J]. Proc Natl Acad Sci U S A, 2011, 108(19):8030-8035.
[13] Pluznick J. A novel SCFA receptor, the microbiota, and blood pressure regulation[J]. Gut microbes, 2014, 5(2):202-207.
[14] Pluznick JL, Zou DJ, Zhang X, et al. Functional expression of the olfactory signaling system in the kidney[J]. Proc Natl Acad Sci U S A, 2009, 106(6):2059-2064.
[15] Jin M, Qian Z, Yin J, et al. The role of intestinal microbiota in cardiovascular disease[J]. J Cell Mol Med, 2019, 23(4):2343-2350
[16] Wilck N, Matus MG, Kearney SM, et al. Salt-responsive gut commensal modulates TH17 axis and disease[J]. Nature, 2017, 551(7682):585-589.
[17] Siltari A, Kivim?ki AS, Ehlers PI, et al. Effects of milk casein derived tripeptides on endothelial enzymes in vitro; a study with synthetic tripeptides[J]. Arzneimittelforschung, 2012, 62(10):477-481.
[18] 李僖文, 孙洁. 肠道菌群与心血管病关系的研究进展[J]. 世界最新医学信息文摘, 2019, 19(26):99-102.
[19] 黄源春, 谭学瑞. 肠道菌群与心血管疾病相关:现状与未来[J]. 世界华人消化杂志, 2017, 25(1):31-42.
[20] P?lsson J, Ricksten SE, Delle M, et al. Changes in renal sympathetic nerve activity during experimental septic and endotoxin shock in conscious rats[J]. Circ Shock, 1988, 24(2):133-141.
[21] Martinez C, González-Castro A, Vicario M, et al. Cellular and molecular basis of intestinal barrier dysfunction in the irritable bowel syndrome[J]. Gut Liver, 2012, 6(3):305-315.
[22] Franco R, Fernández-Suárez D. Alternatively activated microglia and macrophages in the central nervous system[J]. Prog Neurobiol, 2015, 131:65-86.
[23] Jackson L, Eldahshan W, Fagan SC, et al. Within the brain: the renin angiotensin system[J]. Int J Mol Sci, 2018, 19(3):876.
[24] Hu L, Zhang S, Wen H, et al. Melatonin decreases M1 polarization via attenuating mitochondrial oxidative damage depending on UCP2 pathway in prorenin-treated microglia[J]. Plos one, 2019, 14(2):e0212138.
[25] Shen XZ, Li Y, Li L, et al. Microglia participate in neurogenic regulation of hypertension[J]. Hypertension, 2015, 66(2):309316.
[26] Shi P, Diez-Freire C, Jun JY, et al. Brain microglial cytokines in neurogenic hypertension[J]. Hypertension, 2010, 56(2):297-303.
[27] Ganesh BP, Nelson JW, Eskew JR, et al. Prebiotics, probiotics, and acetate supplementation prevent hypertension in a model of obstructive sleep apnea[J]. Hypertension, 2018, 72(5):1141-1150.
[28] Sharma RK, Yang T, Oliveira AC, et al. Microglial cells impact gut nicrobiota and gut pathology in angiotensin Ⅱ-induced hypertension[J]. Circ research, 2019, 124(5):727-736.
[29] Erny D, Hraběde Angelis AL, Jaitin D, et al. Host microbiota constantly control maturation and function of microglia in the CNS[J]. Nat Neurosci, 2015, 18(7):965-977.
[30] Borre YE, O’Keeffe GW, Clarke G, et al. Microbiota and neurodevelopmental windows: implications for brain disorders[J]. Trends Mol Med, 2014, 20(9):509-518.
[31] Huuskonen J, Suuronen T, Nuutinen T, et al. Regulation of microglial inflammatory response by sodium butyrate and short-chain fatty acids[J]. Br J Pharmacol, 2004, 141(5):874-880.
[32] Everard A, Cani PD. Diabetes, obesity and gut microbiota[J]. Best Pract Res Clin Gastroenterol, 2013, 27(1):73-83.
[33] Durgan DJ. Obstructive sleep apnea-induced hypertension: role of the gut microbiota[J]. Curr Hypertens Rep, 2017, 19(4):35.
[34] Kayama H, Takeda K. Functions of innate immune cells and commensal bacteria in gut homeostasis[J]. J Biochem, 2016, 159(2):141-149.
[35] Norlander AE, Saleh MA, Kamat NV, et al. Interleukin-17A regulates renal sodium transporters and renal injury in angiotensin Ⅱ-induced hypertension[J]. Hypertension, 2016, 68(1):167-174.
[36] Santisteban MM, Kim S, Pepine CJ, et al. Brain-gut-bone marrow axis: implications for hypertension and related therapeutics[J]. Circ Res, 2016, 118(8):1327-1336.
[37] Khosravi A, Yá?ez A, Price JG, et al. Gut microbiota promote hematopoiesis to control bacterial infection[J]. Cell Host Microbe, 2014, 15(3):374-381.
[38] Adnan S, Nelson JW, Ajami NJ, et al. Alterations in the gut microbiota can elicit hypertension in rats[J]. Physiol Genomics, 2017, 49(2):96-104.
[39] Wei SG, Yu Y, Zhang ZH, et al. Proinflammatory cytokines upregulate sympathoexcitatory mechanisms in the subfornical organ of the rat[J]. Hypertension, 2015, 65(5):1126-1133.
[40] Zubcevic J, Jun JY, Kim S, et al. Altered inflammatory response is associated with an impaired autonomic input to the bone marrow in the spontaneously hypertensive rat[J]. Hypertension, 2014, 63(3):542-550.
[41] Afan AM, Broome CS, Nicholls S E, et al. Bone marrow innervation regulates cellular retention in the murine haemopoietic system[J]. Br J Haematol, 1997, 98(3):569-577.
[42] Rodgers KE, Xiong S, Steer R, et al. Effect of angiotensin Ⅱ on hematopoietic progenitor cell proliferation[J]. Stem Cells, 2000, 18(4):287-294.
[43] Trott DW, Harrison DG. The immune system in hypertension[J]. Adv Physiol Educ, 2014, 38(1):20-24.
[44] Guzik TJ, Hoch NE, Brown KA, et al. Role of the T cell in the genesis of angiotensin Ⅱ induced hypertension and vascular dysfunction[J]. J Exp Med, 2007, 204(10):2449-2460.
[45] Santisteban MM, Ahmari N, Carvajal JM, et al. Involvement of bone marrow cells and neuroinflammation in hypertension[J]. Circ Res, 2015, 117(2):178-191.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(81274173,81673671)
通信作者:徐敬东,E-mail:xujingdong@163.com
更新日期/Last Update: 2021-01-20