|本期目录/Table of Contents|

[1]向家培 雷玉华.CTRP6在心脏纤维化和内皮向间质转化中的作用研究[J].国际心血管病杂志,2020,05:298-304.
 XIANG Jiapei,LEI Yuhua.The effect of CTRP6 on cardiac fibrosis and endothelial-to-mesenchymal transition[J].International Journal of Cardiovascular Disease,2020,05:298-304.
点击复制

CTRP6在心脏纤维化和内皮向间质转化中的作用研究(PDF)

《国际心血管病杂志》[ISSN:1006-6977/CN:61-1281/TN]

期数:
2020年05期
页码:
298-304
栏目:
基础研究
出版日期:
2020-10-15

文章信息/Info

Title:
The effect of CTRP6 on cardiac fibrosis and endothelial-to-mesenchymal transition
作者:
向家培 雷玉华
445000 恩施土家族苗族自治州中心医院心血管内科
Author(s):
XIANG JiapeiLEI Yuhua
Department of Cardiology, Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Hubei 445000, China
关键词:
CTRP6 心肌纤维化 内皮间质转化
Keywords:
CTRP6 Cardiac fibrosis Endothelial-to-mesenchymal transition
分类号:
-
DOI:
10.3969/j.issn.1673-6583.2020.05.011
文献标识码:
-
摘要:
目的:探讨CTRP6在心肌纤维化和内皮向间质转化中的作用和机制。方法:将雄性C57BL/6J小鼠随机分为对照组、心肌梗死组和治疗组。心肌梗死组和治疗组均采用冠状动脉左前降支结扎的方法建立小鼠心肌梗死模型,治疗组小鼠给予0.2 mg/kg CTRP6皮下注射(从术后第3天到第28天)。采用小动物超声检查心功能,病理染色检测心肌梗死面积,RT-PCR检测纤维化和内皮间质转化相关因子的转录水平,免疫荧光染色检测内皮间质转化标志物。分离培养原代小鼠心脏微血管内皮细胞,将细胞随机分为以下5组:对照组、转化生长因子(TGF)-β1刺激组,治疗组1(给予TGF-β1+1 μg/mL CTRP6处理),治疗组2(给予TGF-β1+2 μg/mL CTRP6处理),治疗组3(给予TGF-β1+4 μg/mL CTRP6处理)。结果:在心肌梗死模型建立4周后,治疗组小鼠死亡率明显低于心肌梗死组(40%对60%,P<0.05),梗死面积小于心肌梗死组[(48.7±3.2)%对(58.8±3.2)%,P<0.05],左室射血分数,左室短轴缩短率明显高于心肌梗死组,左室舒张末期内径,左室收缩末期内径明显低于心肌梗死组(P均<0.05); 小鼠心脏胶原沉积,Ⅰ型胶原、Ⅲ型胶原和TGF-β的mRNA表达水平明显低于心肌梗死组(P均<0.05)。免疫荧光染色显示治疗组心脏平滑肌肌动蛋白α(α-SMA)表达低于心肌梗死组,内皮CD31蛋白表达高于心肌梗死组。治疗组心脏内皮间质转化标志物snail1、snail2、twist1和twist2的mRNA表达水平低于心肌梗死组(P均<0.05)。细胞实验示TGF-β1刺激组内皮细胞内皮间质转化明显增多,各CTRP6治疗组内皮间质转化明显减少。结论:CTRP6通过抑制内皮向间质转化,减少心肌纤维化的发展。
Abstract:
Objective:To explore the role and mechanism of CTRP6 in myocardial fibrosis and endothelial-to-mesenchymal transition(EndMT).Methods:C57BL/6J male mice were randomly divided into three groups: control group, myocardial infarction group and treatment group

参考文献/References

[1] Ong SB, Hernández-Reséndiz S, Crespo-Avilan GE, et al. Inflammation following acute myocardial infarction: multiple players, dynamic roles, and novel therapeutic opportunities[J]. Pharmacol Ther, 2018, 186:73-87.
[2] Nielsen SH, Mouton AJ, Deleon-Pennell KY, et al. Understanding cardiac extracellular matrix remodeling to develop biomarkers of myocardial infarction outcomes[J]. Matrix Biol, 2019, 75/76:43-57.
[3] Schirone L, Forte M, Palmerio S, et al. A review of the molecular mechanisms underlying the development and progression of cardiac remodeling[J]. Oxid Med Cell Longev, 2017, 2017:3920195.
[4] Bhatt AS, Ambrosy AP, Velazquez EJ. Adverse remodeling and reverse remodeling after myocardial infarction[J]. Curr Cardiol Rep, 2017, 19(8):71.
[5] Frangogiannis NG. The extracellular matrix in myocardial injury, repair, and remodeling[J]. J Clin Invest, 2017, 127(5):1600-1612.
[6] Bai B, Ban B, Liu Z, et al. Circulating C1q complement/TNF-related protein(CTRP)1, CTRP9, CTRP12 and CTRP13 concentrations in type 2 diabetes mellitus: in vivo regulation by glucose[J]. PLoS One, 2017, 12(2):e0172271.
[7] Wang W, Lau WB, Wang Y, et al. Reduction of CTRP9, a novel anti-platelet adipokine, contributes to abnormal platelet activity in diabetic animals[J]. Cardiovasc Diabetol, 2016, 15:6.
[8] Su H, Yuan Y, Wang XM, et al. Inhibition of CTRP9, a novel and cardiac-abundantly expressed cell survival molecule, by TNFα-initiated oxidative signaling contributes to exacerbated cardiac injury in diabetic mice[J]. Basic Res Cardiol, 2013, 108(1):315.
[9] Sun X, Nkennor B, Mastikhina O, et al. Endothelium-mediated contributions to fibrosis[J]. Semin Cell Dev Biol, 2020, 101:78-86.
[10] Zhang M, Weng H, Zheng J. NAD+ repletion inhibits the endothelial-to-mesenchymal transition induced by TGF-β in endothelial cells through improving mitochondrial unfolded protein response[J]. Int J Biochem Cell Biol, 2019, 117:105635.
[11] Wang Z, Wang Z, Gao L, et al. miR-222 inhibits cardiac fibrosis in diabetic mice heart via regulating Wnt/β-catenin-mediated endothelium to mesenchymal transition[J]. J Cell Physiol, 2020, 235(3):2149-2160.
[12] Liu Y, Gao L, Zhao X, et al. Saikosaponin A protects from pressure overload-induced cardiac fibrosis via inhibiting fibroblast activation or endothelial cell EndMT[J]. Int J Biol Sci, 2018, 14(13):1923-1934.
[13] Li Q, Yao Y, Shi S, et al. Inhibition of miR-21 alleviated cardiac perivascular fibrosis via repressing EndMT in T1DM[J]. J Cell Mol Med, 2020, 24(1):910-920.
[14] Hulshoff MS, Del Monte-Nieto G, Kovacic J, et al. Non-coding RNA in endothelial-to-mesenchymal transition[J]. Cardiovasc Res, 2019, 115(12):1716-1731.
[15] Chen X, Ge W, Hu J, et al. Inhibition of prostaglandin E2 receptor 4 by lnc000908 to promote the endothelial-mesenchymal transition participation in cardiac remodelling[J]. J Cell Mol Med, 2019, 23(9):6355-6367.
[16] Zhang H, Hui H, Li Z, et al. Pigment epithelium-derived factor attenuates myocardial fibrosis via inhibiting endothelial-to-mesenchymal transition in rats with acute myocardial infarction[J]. Sci Rep, 2017, 7:41932.
[17] Peterson JM, Wei Z, Seldin MM, et al. CTRP9 transgenic mice are protected from diet-induced obesity and metabolic dysfunction[J]. Am J Physiol Regul Integr Comp Physiol, 2013, 305(5):R522-R533.
[18] Khalil H, Kanisicak O, Prasad V, et al. Fibroblast-specific TGF-β-Smad2/3 signaling underlies cardiac fibrosis[J]. J Clin Invest, 2017, 127(10):3770-3783.
[19] Pardali E, Sanchez-Duffhues G, Gomez-Puerto MC, et al. TGF-β-induced endothelial-mesenchymal transition in fibrotic diseases[J]. Int J Mol Sci, 2017, 18(10):2157.

备注/Memo

备注/Memo:
通信作者:雷玉华,E-mail:huayulei_0319@126.com
更新日期/Last Update: 2020-10-15