索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]曾云红 肖政辉 肖云彬.沉默信息调节因子3在心血管疾病中的作用[J].国际心血管病杂志,2020,02:81-83.
点击复制

沉默信息调节因子3在心血管疾病中的作用(PDF)

《国际心血管病杂志》[ISSN:1006-6977/CN:61-1281/TN]

期数:
2020年02期
页码:
81-83
栏目:
综述
出版日期:
2020-03-29

文章信息/Info

Title:
-
作者:
曾云红 肖政辉 肖云彬
410007 长沙,儿童医院心血管内科,南华大学儿科学院(曾云红,肖云彬); 410007 长沙,湖南省儿童医院重症医学科(肖政辉)
Author(s):
-
关键词:
沉默信息调节因子3 心血管疾病 氧化应激 去乙酰化
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-6583.2020.02.005
文献标识码:
-
摘要:
心血管疾病是严重威胁人类健康的疾病,其种类繁多,病因复杂,寻找新的有效治疗靶点一直是心血管疾病的研究热点。沉默信息调节因子(SIRT)3是SIRT家族中主要的线粒体去乙酰化酶,SIRT3通过调节线粒体中各种代谢酶的去乙酰化程度影响其活性,涉及心血管系统主要线粒体代谢过程。该文就SIRT3在心血管疾病中的作用作简要阐述。
Abstract:
-

参考文献/References

[ 1 ] GBD 2016 Causes of Death Collaborators. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980-2016: a systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet, 2017, 390(10100):1151-1210.
[ 2 ] Sun W, Liu C, Chen Q, et al. SIRT3: a new regulator of cardiovascular diseases[J]. Oxid Med Cell Longev, 2018, 2018:7293861.
[ 3 ] Kane AE, Sinclair DA. Sirtuins and NAD+ in the development and treatment of metabolic and cardiovascular diseases [J]. Circ Res, 2018, 123(7):868-885.
[ 4 ] Sebastián C, Mostoslavsky R. The role of mammalian sirtuins in cancer metabolism [J]. Semin Cell Dev Biol, 2015, 43:33-42.
[ 5 ] Anderson KA, Green MF, Huynh FK, et al. SnapShot: mammalian sirtuins[J]. Cell, 2014, 159(4):956-956.
[ 6 ] Wang T, Cao Y, Zheng Q, et al. SENP1-SIRT3 signaling controls mitochondrial protein acetylation and metabolism[J]. Mol cell, 2019, 75(4):823-834.
[ 7 ] Xiong Y, Wang M, Zhao J, et al. Sirtuin 3: A Janus face in cancer(Review)[J]. Int J Oncol, 2016, 49(6):2227-2235.
[ 8 ] Tang X, Chen XF, Chen HZ, et al. Mitochondrial Sirtuins in cardiometabolic diseases[J]. Clin Sci(Lond). 2017, 131(16):2063-2078.
[ 9 ] Freitas M, Rodrigues AR, Tomada N, et al. Effects of aging and cardiovascular disease risk factors on the expression of sirtuins in the human corpus cavernosum[J]. J Sex Med, 2015, 12(11):2141-2152.
[10] Ait-Aissa K, Blaszak SC, Beutner G, et al. Mitochondrial oxidative phosphorylation defect in the heart of subjects with coronary artery disease[J]. Sci Rep, 2019, 9(1):7623.
[11] van der Meer P, van der Wal HH, Melenovsky V. Mitochondrial function, skeletal muscle metabolism, and iron deficiency in heart failure[J]. Circulation, 2019, 139(21):2399-2402.
[12] Kanwal A, Pillai VB, Samant S, et al. The nuclear and mitochondrial sirtuins, Sirt6 and Sirt3, regulate each other's activity and protect the heart from developing obesity-mediated diabetic cardiomyopathy[J]. FASEB J, 2019,33(10):10872-10888.
[13] Hu DX, Liu XB, Song WC, et al. Roles of SIRT3 in heart failure: from bench to bedside[J]. J Zhejiang Univ Sci B, 2016, 17(11):821-830.
[14] Chen T, Liu J, Li N, et al. Mouse SIRT3 attenuates hypertrophy-related lipid accumulation in the heart through the deacetylation of LCAD[J]. PloS one, 2015, 10(3):e0118909.
[15] Koentges C, Pfeil K, Schnick T, et al. SIRT3 deficiency impairs mitochondrial and contractile function in the heart[J]. Basic Res Cardiol, 2015, 110(4):36.
[16] Luptak I, Qin F, Sverdlov AL, et al. Energetic dysfunction is mediated by mitochondrial reactive oxygen species and precedes structural remodeling in metabolic heart disease[J]. Antioxid Redox Signal, 2019, 31(7):539-549.
[17] Tao R, Coleman MC, Pennington JD, et al. Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress[J]. Mol Cell, 2010, 40(6):893-904.
[18] Chang G, Chen Y, Zhang H, et al. Trans sodium crocetinate alleviates ischemia/ reperfusion-induced myocardial oxidative stress and apoptosis via the SIRT3/ FOXO3a/SOD2 signaling pathway[J]. Int Immunopharmacol, 2019, 71:361-371.
[19] Pillai VB, Sundaresan NR, Kim G, et al. Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway[J]. J Biol Chem, 2010, 285(5):3133-3144.
[20] Masi S, Georgiopoulos G, Chiriacò M, et al. The importance of endothelial dysfunction in resistance artery remodelling and cardiovascular risk[J]. Cardiovasc Res, 2020, 116(2):429-437.
[21] Chimini JS, Possomato-Vieira JS, da Silva MLS, et al.. Placental nitric oxide formation and endothelium-dependent vasodilation underlie pravastatin effects against angiogenic imbalance, hypertension in pregnancy and intrauterine growth restriction[J]. Basic Clin Pharmacol Toxicol, 2019, 124(4):385-393.
[22] Cheung KG, Cole LK, Xiang B, et al. Sirtuin-3(SIRT3)protein attenuates doxorubicin-induced oxidative stress and improves mitochondrial respiration in H9c2 cardiomyocytes[J]. J Biol Chem, 2015, 290(17):10981-10993.
[23] Dikalova AE, Itani HA, Nazarewicz RR, et al. Sirt3 Impairment and SOD2 hyperacetylation in vascular oxidative stress and hypertension[J]. Circ Res, 2017, 121(5):564-574.
[24] Paulin R, Dromparis P, Sutendra G, et al. Sirtuin 3 deficiency is associated with inhibited mitochondrial function and pulmonary arterial hypertension in rodents and humans[J]. Cell Metab, 2014, 20(5):827-839.
[25] Kim HS, Patel K, Muldoon-Jacobs K, et al. SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress[J]. Cancer Cell, 2010, 17(1):41-52.
[26] Karnewar S, Vasamsetti SB, Gopoju R, et al. Mitochondria-targeted esculetin alleviates mitochondrial dysfunction by AMPK-mediated nitric oxide and SIRT3 regulation in endothelial cells: potential implications in atherosclerosis[J]. Sci Rep, 2016, 6:24108.
[27] Xu H, Hertzel AV, Steen KA, et al. Loss of fatty acid binding protein 4/aP2 reduces macrophage inflammation through activation of SIRT3[J]. Mol Endocrinol, 2016, 30(3):325-334.
[28] Ruankham W, Suwanjang W, Wongchitrat P, et al.Sesamin and sesamol attenuate H2O2-induced oxidative stress on human neuronal cells via the SIRT1-SIRT3-FOXO3a signaling pathway [J]. Nutr Neurosci, 2019, 30(1):1-12.
[29] Frank A, Bonney M, Bonney S, et al. Myocardial ischemia reperfusion injury: from basic science to clinical bedside[J]. Semin Cardiothorac Vasc Anesth, 2012, 16(3):123-132.
[30] Yang J, Yin HS, Cao YJ, et al. Arctigenin attenuates ischemia/reperfusion induced ventricular arrhythmias by decreasing oxidative stress in rats[J]. Cell Physiol Biochem, 2018, 49(2):728-742.
[31] Xue J, Yan X, Yang Y, et al. Connexin 43 dephosphorylation contributes to arrhythmias and cardiomyocyte apoptosis in ischemia/reperfusion hearts[J]. Basic Res Cardiol, 2019, 114(5):40.
[32] Hafner AV, Dai J, Gomes AP, et al. Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy[J]. Aging(Albany NY), 2010, 2(12):914-923.
[33] Feng J, Chen X, Liu R, et al. Melatonin protects against myocardial ischemia-reperfusion injury by elevating Sirtuin3 expression and manganese superoxide dismutase activity[J]. Free Radic Res, 2018, 52(8):840-849.
[34] Michelakis ED, Gurtu V, Webster L, et al. Inhibition of pyruvate dehydrogenase kinase improves pulmonary arterial hypertension in genetically susceptible patients[J]. Sci Transl Med, 2017, 9(413):eaao4583.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(81500041); 湖南省临床医疗技术创新引导项目(2018SK50413); 湖南省重点实验室平台项目(2018TP1028)
作者单位:410007 长沙,儿童医院心血管内科,南华大学儿科学院(曾云红,肖云彬); 410007 长沙,湖南省儿童医院重症医学科(肖政辉)
通信作者:肖云彬,E-mail: xiaoyunbinrui@126.com
更新日期/Last Update: 2020-03-30