索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]常小倩 胡晓 吕志慧 安荣 宋延彬.心肌细胞直接重编程研究进展[J].国际心血管病杂志,2019,06:328-332.
点击复制

心肌细胞直接重编程研究进展(PDF)

《国际心血管病杂志》[ISSN:1006-6977/CN:61-1281/TN]

期数:
2019年06期
页码:
328-332
栏目:
综述
出版日期:
2019-12-31

文章信息/Info

Title:
-
作者:
常小倩 胡晓 吕志慧 安荣 宋延彬
716000 延安大学附属医院心内科
Author(s):
-
关键词:
直接重编程 心肌样细胞 成纤维细胞
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-6583.2019.06.003
文献标识码:
-
摘要:
心脏疾病如缺血性心脏病和心肌病,主要表现为心肌纤维化增加和心肌细胞丢失,可引起心力衰竭,最终导致死亡。成纤维细胞直接重编程为心肌样细胞可能成为心脏病治疗的新途径,在心脏再生领域有着广阔的应用前景。该文介绍了心肌细胞直接重编程的发展及相关机制。
Abstract:
-

参考文献/References

[ 1 ] Chen W, Frangogiannis NG. Fibroblasts in post-infarction inflammation and cardiac repair[J]. Biochim Biophys Acta, 2013, 1833(4):945-953.
[ 2 ] Ieda M, Fu JD, Delgado-Olguin P, et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors[J]. Cell, 2010, 142(3):375-386.
[ 3 ] Song K, Nam YJ, Luo X, et al. Heart repair by reprogramming non-myocytes with cardiac transcription factors[J]. Nature, 2012, 485(740):599-604.
[ 4 ] Addis RC, Ifkovits JL, Pinto F, et al. Optimization of direct fibroblast reprogramming to cardiomyocytes using calcium activity as a functional measure of success[J]. J Mol Cell Cardiol, 2013, 60:97-106.
[ 5 ] Protze S, Khattak S, Poulet CA, et al. A new approach to transcription factor screening for reprogramming of fibroblasts to cardiomyocyte-like cells[J]. J Mol Cell Cardiol, 2012, 53(3):323-332.
[ 6 ] Mathison M, Singh VP, Sanagasetti D, et al. Cardiac reprogramming factor Gata4 reduces postinfarct cardiac fibrosis through direct repression of the profibrotic mediator snail[J]. J Thorac Cardiovasc Surg, 2017, 154(5):1601-1610.
[ 7 ] Zhou Y, Wang L, Vaseghi HR, et al. Bmi1 is a key epigenetic barrier to direct cardiac reprogramming[J]. Cell Stem Cell, 2016, 18(3):382-395.
[ 8 ] Abad M, Hashimoto H, Zhou HY, et al. Notch inhibition enhances cardiac reprogramming by increasing MEF2C transcriptional activity[J]. Stem Cell Reports, 2017, 8(3):548-560.
[ 9 ] Guo Y, Lei I, Tian S, et al. Chemical suppression of specific C-C chemokine signaling pathways enhances cardiac reprogramming[J]. J Biol Chem, 2019, 294(23):9134-9146.
[10] Qian L, Huang Y, Spencer CI, et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes[J]. Nature, 2012, 485(7400):593-598.
[11] Zhang Z, Zhang AD, Kim LJ, et al. Ensuring expression of four core cardiogenic transcription factors enhances cardiac reprogramming[J]. Sci Rep, 2019, 9(1):6362.
[12] Mathison M, Singh VP, Gersch RP, et al. "Triplet" polycistronic vectors encoding Gata4, Mef2c, and Tbx5 enhances postinfarct ventricular functional improvement compared with singlet vectors[J]. J Thorac Cardiovasc Surg, 2014, 148(4):1656-1664.
[13] Inagawa K, Miyamoto K, Yamakawa H, et al. Induction of cardiomyocyte-like cells in infarct hearts by gene transfer of Gata4, Mef2c, and Tbx5[J]. Circ Res, 2012, 111(9):1147-1156.
[14] Jayawardena TM, Egemnazarov B, Finch EA, et al. microRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes[J]. Circ Res, 2012, 110(11):1465-1473.
[15] Jayawardena TM, Finch EA, Zhang L, et al. MicroRNA induced cardiac reprogramming in vivo evidence for mature cardiac myocytes and improved cardiac function[J]. Circ Res, 2015, 116(3):418-424.
[16] Macarthur CC, Fontes A, Ravinder N, et al. Generation of human-induced pluripotent stem cells by a nonintegrating RNA Sendai virus vector in feeder-free or xeno-free conditions[J]. Stem Cells Int, 2012, 2012:564612.
[17] Haase A, Göehring G, Martin U. Generation of non-transgenic iPS cells from human cord blood CD34(+)cells under animal component-free conditions[J]. Stem Cell Res, 2017, 21:71-73.
[18] Tan X, Dai Q, Guo T, et al. Efficient generation of transgene- and feeder-free induced pluripotent I stem cells from human dental mesenchymal stem cells and their chemically defined differentiation into cardiomyocytes[J]. Biochem Biophys Res Commun, 2018, 495(4):2490-2497.
[19] Miyamoto K, Akiyama M, Tamura F, et al. Direct in vivo reprogramming with sendai virus vectors improves cardiac function after myocardial infarction[J]. Cell Stem Cell, 2018, 22(1):91-103.
[20] Passaro F, Testa G, Ambrosone L, et al. Nanotechnology-based cardiac targeting and direct cardiac reprogramming: the betrothed[J]. Stem Cells Int, 2017, 2017:4940397.
[21] Chang Y, Lee E, Kim J, et al. Efficient in vivo direct conversion of fibroblasts into cardiomyocytes using a nanoparticle-based gene carrier[J]. Biomaterials, 2019, 192:500-509.
[22] Zhao Y, Londono P, Cao Y, et al. High-efficiency reprogramming of fibroblasts into cardiomyocytes requires suppression of pro-fibrotic signalling[J]. Nat Commun, 2015, 6:8243.
[23] Mohamed TM, Stone NR, Berry EC, et al. Chemical enhancement of in vitro and in vivo direct cardiac reprogramming[J]. Circulation, 2017, 135(10):978-995.
[24] Ifkovits JL, Addis RC, Epstein JA. Inhibition of TGF beta signaling increases direct conversion of fibroblasts to induced cardiomyocytes[J]. PLoS One, 2014, 9(2):e89678.
[25] Mosimann C, Hausmann G, Basler K. Beta-catenin hits chromatin: regulation of Wnt target gene activation[J]. Nat Rev Mol Cell Biol, 2009, 10(4):276-286.
[26] Muraoka N, Nara K, Tamura F, et al. Role of cyclooxygenase-2-mediated prostaglandin E2-prostaglandin E receptor 4 signaling in cardiac reprogramming[J]. Nat Commun, 2019, 10(1):674.
[27] Zhou HY, Morales MG, Hashimoto HA, et al. ZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression[J]. Genes Dev, 2017, 31(17):1770-1783.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(81760069); 陕西省重点研发计划(2018SF-116); 延安医疗卫生攻关项目(2018KS-16)
作者单位:716000 延安大学附属医院心内科
通信作者:宋延彬,Email:592331246@qq.com
更新日期/Last Update: 2019-12-27