索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]詹成创 白楠 娄奇 李为民.血管紧张素(1-12)/糜酶轴有望成为心力衰竭治疗的新靶点[J].国际心血管病杂志,2019,05:273-276.
点击复制

血管紧张素(1-12)/糜酶轴有望成为心力衰竭治疗的新靶点(PDF)

《国际心血管病杂志》[ISSN:1006-6977/CN:61-1281/TN]

期数:
2019年05期
页码:
273-276
栏目:
综述
出版日期:
2019-10-23

文章信息/Info

Title:
-
作者:
詹成创 白楠 娄奇 李为民
150001 哈尔滨医科大学附属第一医院心血管内科
Author(s):
-
关键词:
血管紧张素(1-12)糜酶心力衰竭靶点
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-6583.2019.05.005
文献标识码:
-
摘要:
血管紧张素Ⅱ(Ang Ⅱ)的来源有多种途径,血管紧张素(1-12)/糜酶(Chymase)途径是组织源性Ang Ⅱ的主要来源。人体内存在Ang Ⅱ的逃逸现象,抑制体循环肾素-血管紧张素系统(RAS)活性并不能显著降低心力衰竭患者死亡率;而Chymase抑制剂能减少Ang Ⅱ生成,控制Ang Ⅱ逃逸,延缓心室重构。Chymase有望成为治疗心力衰竭的新靶点。该文介绍血管紧张素(1-12)/Chymase轴在心力衰竭病理生理及治疗中的研究进展。
Abstract:
-

参考文献/References

[1] Hussain M, Awan FR. Hypertension regulating angiotensin peptides in the pathobiology of cardiovascular disease[J]. Clin Exp Hypertens, 2018, 40(4):344-352.
[2] Nagata S, Kato J, Sasaki K, et al. Isolation and identification of proangiotensin-12, a possible component of the renin-angiotensin system[J]. Biochem Biophys Res Commun, 2006, 350(4):1026-1031.
[3] Ahmad S, Simmons T, Varagic J, et al. Chymase-dependent generation of angiotensin Ⅱ from angiotensin-(1-12) in human atrial tissue[J]. PLoS One, 2011, 6(12):e28501.
[4] Okamura K, Okuda T, Shirai K, et al. Positive correlation between blood pressure or heart rate and chymase-dependent angiotensin Ⅱ-forming activity in circulating mononuclear leukocytes measured by new ELISA[J]. Clin Exp Hypertens, 2018, 40(2):112-117.
[5] Arakawa H, Kawabe K, Sapru HN. Angiotensin-(1-12) in the rostral ventrolateral medullary pressor area of the rat elicits sympathoexcitatory responses[J]. Exp Physiol, 2013, 98(1):94-108.
[6] Li TK, Zhang X, Cheng HJ, et al. Critical role of the chymase/angiotensin-(1-12) axis in modulating cardiomyocyte contractility[J]. Int J Cardiol, 2018, 264:137-144.
[7] De Mello WC. Intracellular angiotensin Ⅱ regulates the inward calcium current in cardiac myocytes[J]. Hypertension, 1998, 32(6):976-982.
[8] Ferrario CM, Jessup J, Chappell MC, et al. Effect of angiotensin-converting enzyme inhibition and angiotensin Ⅱ receptor blockers on cardiac angiotensin-converting enzyme 2[J]. Circulation, 2005, 111(20):2605-2610.
[9] Ferrario CM, VonCannon J, Jiao Y, et al. Cardiac angiotensin-(1-12) expression and systemic hypertension in rats expressing the human angiotensinogen gene[J]. Am J Physiol Heart Circ Physiol, 2016, 310(8):H995-H1002.
[10] Ferrario CM. Cardiac remodelling and RAS inhibition[J]. Ther Adv Cardiovasc Dis, 2016, 10(3):162-171.
[11] Packer M. Love of angiotensin-converting enzyme inhibitors in the time of cholera[J]. JACC Heart Fail, 2016, 4(5):403-408.
[12] Heart Outcomes Prevention Evaluation Study Investigators, Yusuf S, Sleight P, et al. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients[J]. N Engl J Med. 2000, 342(3):145-153.
[13] SOLVD Investigators, Yusuf S, Pitt B, et al. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure[J]. N Engl J Med, 1991, 325(5):293-302.
[14] Düsing R. Mega clinical trials which have shaped the RAS intervention clinical practice[J]. Ther Adv Cardiovasc Dis, 2016, 10(3):133-150.
[15] Baker WL, Coleman CI, Kluger J, et al. Systematic review: comparative effectiveness of angiotensin-converting enzyme inhibitors or angiotensin Ⅱ-receptor blockers for ischemic heart disease[J]. Ann Intern Med, 2009, 151(12):861-871.
[16] Jin D, Takai S, Yamada M, et al. Impact of chymase inhibitor on cardiac function and survival after myocardial infarction[J]. Cardiovasc Res, 2003, 60(2):413-420.
[17] Abadir PM, Walston JD, Carey RM. Subcellular characteristics of functional intracellular renin-angiotensin systems[J]. Peptides, 2012, 38(2):437-445.
[18] Ferrario CM, Ahmad S, Varagic J, et al. Intracrine angiotensin Ⅱ functions originate from noncanonical pathways in the human heart[J]. Am J Physiol Heart Circ Physiol, 2016, 311(2):H404-H414.
[19] Wei CC, Hase N, Inoue Y, et al. Mast cell chymase limits the cardiac efficacy of Ang Ⅰ-converting enzyme inhibitor therapy in rodents[J]. J Clin Invest, 2010, 120(4):1229-1239.
[20] Zheng J, Wei CC, Hase N, et al. Chymase mediates injury and mitochondrial damage in cardiomyocytes during acute ischemia/reperfusion in the dog[J]. PLoS One, 2014, 9(4):e94732.
[21] Fu L, Wei CC, Powell PC, et al. Increased fibroblast chymase production mediates procollagen autophagic digestion in volume overload[J]. J Mol Cell Cardiol, 2016, 92:1-9.
[22] Wang H, Jessup JA, Zhao Z, et al. Characterization of the cardiac renin angiotensin system in oophorectomized and estrogen-replete mRen2.lewis rats[J]. PLoS One, 2013, 8(10):e76992.
[23] Baker KM, Chernin M, Schreiber T, et al. Evidence of a novel intracrine mechanism in angiotensin Ⅱ-induced cardiac hypertrophy[J]. Regul Pept, 2004, 120(1-3):5-13.
[24] Kumar R, Singh VP, Baker KM. The intracellular renin-angiotensin system: a new paradigm[J]. Trends Endocrinol Metab, 2007, 18(5):208-214.
[25] Ahmad S, Varagic J, Voncannon JL, et al. Primacy of cardiac chymase over angiotensin converting enzyme as an angiotensin-(1-12) metabolizing enzyme[J]. Biochem Biophys Res Commun, 2016, 478(2):559-564.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(81270252)
作者单位:150001 哈尔滨医科大学附属第一医院心血管内科
通信作者:李为民,Email:liweimin_2009@126.com
更新日期/Last Update: 2019-10-23