索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]杜凤立 谢国红 吴会会 苏国海.假性醛固酮减少症Ⅱ型的分子遗传学研究进展[J].国际心血管病杂志,2019,04:223-225.
点击复制

假性醛固酮减少症Ⅱ型的分子遗传学研究进展(PDF)

《国际心血管病杂志》[ISSN:1006-6977/CN:61-1281/TN]

期数:
2019年04期
页码:
223-225
栏目:
综述
出版日期:
2019-09-27

文章信息/Info

Title:
-
作者:
杜凤立 谢国红 吴会会 苏国海
250013 济南,山东大学附属济南市中心医院心内科
Author(s):
-
关键词:
假性醛固酮减少症Ⅱ型 高血压 分子遗传学
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-6583.2019.04.009
文献标识码:
-
摘要:
假性醛固酮减少症Ⅱ型(PHA Ⅱ)是一类罕见的单基因遗传性高血压, 以高血钾、高血压为突出表现。PHA Ⅱ通常为染色体显性遗传,染色体隐性遗传少见。目前已克隆与该病有关的基因包括WNK1、WNK4、KLHL3和CUL3基因。临床上由于对该病认识不足,较易漏诊和误诊。该文介绍PHA Ⅱ的分子遗传学研究进展。
Abstract:
-

参考文献/References

[ 1 ] Sethar GH, Almoghawi A, Khan N, et al. Pseudohypoaldosteronism type Ⅱ: a young girl presented with hypertension, hyperkalemia and metabolic acidosis[J]. J Coll Physicians Surg Pak, 2018, 28(3):S21-S22.
[ 2 ] Casas-Alba D, Vila Cots J, Monfort Carretero L, et al. Pseudohypoaldosteronism types I and Ⅱ: little more than a name in common[J]. J Pediatr Endocrinol Metab, 2017, 30(5):597-601.
[ 3 ] 迟相林.合并糖尿病的高血压患者是否可以常规应用噻嗪类利尿剂?[J].中华高血压杂志, 2015, 23(7):616-621.
[ 4 ] Mansfield TA, Simon DB, Farfel Z, et al. Multilocus linkage of familial hyperkalaemia and hypertension, pseudohypoaldosteronism type Ⅱ, to chromosomes 1q31-42 and 17p11-q21[J]. Nat Genet, 1997, 16(2):202-205.
[ 5 ] Wilson FH, Disse-Nicodème S, Choate KA, et al. Human hypertension caused by mutations in WNK kinases[J]. Science, 2001, 293(5532):1107-1112.
[ 6 ] Rafael C, Soukaseum C, Baudrie V, et al. Consequences of SPAK inactivation on hyperkalemic hypertension caused by WNK1 mutations: evidence for differential roles of WNK1 and WNK4[J]. Sci Rep, 2018, 8(1):3249.
[ 7 ] Susa K, Sohara E, Takahashi D, et al. WNK4 is indispensable for the pathogenesis of pseudohypoaldosteronism type Ⅱ caused by mutant KLHL3[J]. Biochem Biophys Res Commun, 2017, 491(3):727-732.
[ 8 ] Brooks AM, Owens M, Sayer JA, et al. Pseudohypoaldosteronism type 2 presenting with hypertension and hyperkalaemia due to a novel mutation in the WNK4 gene[J]. QJM, 2012, 105(8):791-794.
[ 9 ] Zhang C, Wang Z, Xie J, et al. Identification of a novel WNK4 mutation in Chinese patients with pseudohypoaldosteronism type Ⅱ[J]. Nephron Physiol, 2011, 118(3):53-61.
[10] López-Cayuqueo KI, Chavez-Canales M, Pillot A, et al. A mouse model of pseudohypoaldosteronism type Ⅱ reveals a novel mechanism of renal tubular acidosis[J]. Kidney Int, 2018, 94(3):514-523.
[11] Kamide K, Takiuchi S, Tanaka C, et al. Three novel missense mutations of WNK4, a kinase mutated in inherited hypertension, in Japanese hypertensives: implication of clinical phenotypes[J]. Am J Hypertens, 2004, 17(5 pt 1):446-449.
[12] Yang YS, Xie J, Yang SS, et al. Differential roles of WNK4 in regulation of NCC in vivo[J]. Am J Physiol Renal Physiol, 2018, 314(4):999-1007.
[13] Ring AM, Cheng SX, Leng Q, et al. WNK4 regulates activity of the epithelial Na+ channel in vitro and in vivo[J]. Proc Natl Acad Sci USA, 2007, 104(10):4020-4024.
[14] Heise CJ, Xu BE, Deaton SL, et al. Serum and glucocorticoid-induced kinase(SGK)1 and the epithelial sodium channel are regulated by multiple with no lysine(WNK)family members[J]. J Biol Chem, 2010, 285(33):25161-25167.
[15] Delaloy C, Lu J, Houot AM, et al. Multiple promoters in the WNK1 gene: one controls expression of a kidney-specific kinase-defective isoform[J]. Mol Cell Biol, 2003, 23(24):9208-9221.
[16] Yuan YP, Zhao H, Peng LQ, et al. The SGK3-triggered ubiquitin-proteasome degradation of podocalyxin(PC)and ezrin in podocytes was associated with the stability of the PC/ezrin complex[J]. Cell Death Dis, 2018, 9(11):1114.
[17] 朱占芳, 徐蕾, 刘建虎, 等. WNK1基因rs2301880位点多态性与血压钠反应性的家系关联分析[J]. 精准医学杂志, 2018, 33(2):107-109.
[18] 王思远, 苏可, 严苗, 等. 抑制酪氨酸激酶Src对血管紧张素Ⅱ诱导足细胞损伤的保护作用[J]. 武汉大学学报(医学版), 2016, 37(1):1-5.
[19] Disse-Nicodème S, Achard JM, Desitter I, et al. A new locus on chromosome 12p13.3 for pseudohypoaldosteronism type Ⅱ, an autosomal dominant form of hypertension[J]. Am J Hum Genet, 2000, 67(2):302-310.
[20] Lai F, Orelli BJ, Till BG, et al. Molecular characterization of KLHL3, a human homologue of the Drosophila kelch gene[J]. Genomics, 2000, 66(1):65-75.
[21] Boyden LM, Choi M, Choate KA, et al. Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities[J]. Nature, 2012, 482(7383):98-102.
[22] Louis-Dit-Picard H, Barc J, Trujillano D, et al. KLHL3 mutations cause familial hyperkalemic hypertension by impairing ion transport in the distal nephron[J]. Nat Genet, 2012, 44(4):456-460.
[23] Lin CM, Cheng CJ, Yang SS, et al. Generation and analysis of a mouse model of pseudohypoaldosteronism type Ⅱ caused by KLHL3 mutation in BTB domain[J]. FASEB J, 2019, 33(1):1051-1061.
[24] McCormick JA, Yang CL, Zhang C, et al. Hyperkalemic hypertension-associated cullin 3 promotes WNK signaling by degrading KLHL3[J]. J Clin Invest, 2014, 124(11):4723-4736.
[25] 牛伟, 周波, 吴萍, 等. 家族性高血钾型高血压Cullin3致病突变体neddylation异常的分子机制研究[J].上海交通大学学报(医学版), 2016, 36(10):1420-1424.
[26] Shao L, Cui L, Lu J, et al. A novel mutation in exon 9 of Cullin 3 gene contributes to aberrant splicing in pseudohypoaldosteronism type Ⅱ[J]. FEBS Open Bio, 2018, 8(3):461-469.
[27] Glover M, Ware JS, Henry A, et al. Detection of mutations in KLHL3 and CUL3 in families with FHHt(familial hyperkalaemic hypertension or Gordon's syndrome)[J]. Clin Sci(Lond), 2014, 126(10):721-726.

备注/Memo

备注/Memo:
基金项目:山东省自然科学基金(ZR2018MH003)
作者单位:250013 济南,山东大学附属济南市中心医院心内科
通信作者:苏国海,Email: gttstg@163.com
更新日期/Last Update: 2019-09-27