索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]陈龙 严文华.间充质干细胞在心肌梗死中归巢的优化策略[J].国际心血管病杂志,2019,01:17-21.
点击复制

间充质干细胞在心肌梗死中归巢的优化策略(PDF)

《国际心血管病杂志》[ISSN:1006-6977/CN:61-1281/TN]

期数:
2019年01期
页码:
17-21
栏目:
综述
出版日期:
2019-02-20

文章信息/Info

Title:
-
作者:
陈龙 严文华
215000 苏州大学医学部(陈龙); 215021 苏州大学附属儿童医院心内科(严文华)
Author(s):
-
关键词:
心肌梗死 间充质干细胞 归巢
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-6583.2019.01.005
文献标识码:
-
摘要:
基于间充质干细胞(MSC)的细胞疗法能加速新生血管形成,促进心肌再生,在心肌梗死的治疗中显示出优越性。然而,MSC无法高效地归巢至靶组织是限制心肌再生的瓶颈之一。归巢是基于MSC的细胞疗法在临床应用中能否达到安全与高效的关键步骤。该文回顾了近年来MSC在心肌梗死中的应用,并侧重讨论促进其归巢的策略与方法。
Abstract:
-

参考文献/References


[ 1 ] Shafei AE, Ali MA, Ghanem HG, et al. Mesenchymal stem cell therapy: a promising cell-based therapy for treatment of myocardial infarction [J]. J Gene Med, 2017, 19(12):2995.
[ 2 ] Lazennec G, Lam PY. Recent discoveries concerning the tumor-mesenchymal stem cell interactions[J]. Biochim Biophys Acta, 2016, 1866(2):290-299.
[ 3 ] Vizoso FJ, Eiro N, Cid S, et al. Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine[J]. Int J Mol Sci, 2017, 18(9):E1852.
[ 4 ] Makino S, Fukuda K, Miyoshi S, et al. Cardiomyocytes can be generated from marrow stromal cells in vitro[J]. J Clin Invest, 1999, 103(5):697-705.
[ 5 ] Chen SL, Fang WW, Ye F, et al. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction[J].Am J Cardiol, 2004, 94(1):92-95.
[ 6 ] Keith MC, Bolli R. "String theory" of c-kit(pos)cardiac cells: a new paradigm regarding the nature of these cells that may reconcile apparently discrepant results[J]. Circ Res, 2015, 116(7):1216-1230.
[ 7 ] Miao C, Lei M, Hu W, et al. A brief review: the therapeutic potential of bone marrow mesenchymal stem cells in myocardial infarction[J]. Stem Cell Res Ther, 2017, 8(1):242.
[ 8 ] Guo Y, Wysoczynski M, Nong Y, et al. Repeated doses of cardiac mesenchymal cells are therapeutically superior to a single dose in mice with old myocardial infarction[J]. Basic Res Cardiol, 2017, 112(2):18.
[ 9 ] Ji ST, Kim H, Yun J, et al. Promising therapeutic strategies for mesenchymal stem cell-based cardiovascular regeneration: from cell priming to tissue engineering[J]. Stem Cells Int, 2017, 2017:3945403.
[10] Rodrigo SF, Van Ramshorst J, Hoogslag GE, et al. Intramyocardial injection of autologous bone marrow-derived ex vivo expanded mesenchymal stem cells in acute myocardial infarction patients is feasible and safe up to 5 years of follow-up[J]. J Cardiovasc Transl Res, 2013, 6(5):816-825.
[11] Zhang SJ, Song XY, He M, et al. Effect of TGF-β1/SDF-1/CXCR4 signal on BM-MSCs homing in rat heart of ischemia/perfusion injury[J]. Eur Rev Med Pharmacol Sci, 2016, 20(5):899-905.
[12] Park S, Jang H, Kim BS, et al. Directional migration of mesenchymal stem cells under an SDF-1α gradient on a microfluidic device[J]. PLoS One, 2017, 12(9):e0184595.
[13] Chen MS, Lin CY, Chiu YH, et al. IL-1β-induced matrix metalloprotease-1 promotes mesenchymal stem cell migration via PAR1 and G-protein-coupled signaling pathway[J]. Stem Cells Int, 2018, 2018:3524759.
[14] Petrenko Y, Syková E, Kubinová . The therapeutic potential of three-dimensional multipotent mesenchymal stromal cell spheroids[J]. Stem Cell Res Ther, 2017, 8(1):94.
[15] Joshi J, Mahajan G, Kothapalli CR. Three-dimensional collagenous niche and azacytidine selectively promote time-dependent cardiomyogenesis from human bone marrow-derived MSC spheroids[J]. Biotechnol Bioeng, 2018, 115(8):2013-2026.
[16] Kean TJ, Duesler L, Young RG, et al. Development of a peptide-targeted, myocardial ischemia-homing, mesenchymal stem cell[J]. J Drug Target, 2012, 20(1):23-32.
[17] Won YW, Patel AN, Bull DA. Cell surface engineering to enhance mesenchymal stem cell migration toward an SDF-1 gradient[J]. Biomaterials, 2014, 35(21):5627-5635.
[18] Cheng Z, Ou L, Zhou X, et al. Targeted migration of mesenchymal stem cells modified with CXCR4 gene to infarcted myocardium improves cardiac performance[J]. Mol Ther, 2008, 16(3):571-579.
[19] Mun JY, Shin KK, Kwon O, et al. Minicircle microporation-based non-viral gene delivery improved the targeting of mesenchymal stem cells to an injury site[J]. Biomaterials, 2016, 101:310-320.
[20] Martino MM, Briquez PS, Güç E, et al. Growth factors engineered for super-affinity to the extracellular matrix enhance tissue healing[J]. Science, 2014, 343(6173): 885-888.
[21] Saxena N, Mogha P, Dash S, et al. Matrix elasticity regulates mesenchymal stem cell chemotaxis[J]. J Cell Sci, 2018, 131(7):jcs211391.
[22] He F, Luo PF, Tang T, et al. Targeted release of stromal cell-derived factor-1 alpha by reactive oxygen species-sensitive nanoparticles results in bone marrow stromal cell chemotaxis and homing, and repair of vascular injury caused by electrical burns[J]. PLoS One, 2018, 13(3):e0194298.
[23] Barhanpurkar-Naik A, Mhaske ST, Pote ST, et al. Interleukin-3 enhances the migration of human mesenchymal stem cells by regulating expression of CXCR4[J]. Stem Cell Res Ther, 2017, 8(1):168.
[24] Popa MA, Mihai MC, Constantin AA, et al. Dihydrotestosterone induces pro-angiogenic factors and assists homing of MSC into the cardiac tissue[J]. J Mol Endocrinol, 2018, 60(1):1-15.
[25] DeBecker A, Riet IV, et al. Homing and migration of mesenchymal stromal cells: How to improve the efficacy of cell therapy?[J]. World J Stem Cells, 2016, 8(3):73-87.
[26] Karpov AA, Udalova DV, Pliss MG, et al. Can the outcomes of mesenchymal stem cell-based therapy for myocardial infarction be improved? Providing weapons and armour to cells[J]. Cell Prolif, 2017, 50(2):12316.
[27] Heirani-Tabasi A, Naderi-Meshkin H, Matin MM, et al. Augmented migration of mesenchymal stem cells correlates with the subsidiary CXCR4 variant[J]. Cell Adh Migr, 2018, 12(2):118-126.
[28] Lv BK, Hua T, Li F, et al. Hypoxia-inducible factor 1 α protects mesenchymal stem cells against oxygen-glucose deprivation-induced injury via autophagy induction and PI3K/AKT/mTOR signaling pathway[J]. Am J Transl Res, 2017, 9(5):2492-2499.
[29] Hu X, Xu Y, Zhong Z, et al. A large-scale investigation of hypoxia-preconditioned allogeneic mesenchymal stem cells for myocardial repair in nonhuman primates paracrine activity without remuscularization[J]. Circ Res, 2016, 118(6):970-983.
[30] Cencioni C, Melchionna R, Straino SA, et al. Ex vivo acidic preconditioning enhances bone marrow ckit cell therapeutic potential via increased CXCR4 expression[J]. Eur Heart J, 2013, 34(26):2007-2016.
[31] Haque N, Abu Kasim NH, Rahman MT. Optimization of pre-transplantation conditions to enhance the efficacy of mesenchymal stem cells[J]. Int J Biol Sci, 2015, 11(3):324-334.
[32] Huang Z, Shen Y, Sun A, et al. Magnetic targeting enhances retrograde cell retention in a rat model of myocardial infarction[J]. Stem Cell Res Ther, 2013, 4(6):149.
[33] El Gammal ZH, Zaher AM, El-Badri N. Effect of low-level laser-treated mesenchymal stem cells on myocardial infarction[J]. Lasers Med Sci, 2017, 32(7):1637-1646.
[34] Xu YL, Gao YH, Liu Z, et al. Myocardium-targeted transplantation of mesenchymal stem cells by diagnostic ultrasound-mediated microbubble destruction improves cardiac function in myocardial infarction of New Zealand rabbits[J]. Int J Cardiol, 2010, 138(2):182-195.
[35] Li L, Wu S, Liu Z, et al. Ultrasound-targeted microbubble destruction improves the migration and homing of mesenchymal stem cells after myocardial infarction by upregulating SDF-1/CXCR4: a pilot study[J]. Stem Cells Int, 2015, 2015:691310.
[36] Chang XE, Liu JQ, Liao XD, et al. Ultrasound-mediated microbubble destruction enhances the therapeutic effect of intracoronary transplantation of bone marrow stem cells on myocardial infarction[J]. Int J Clin Exp Pathol, 2015, 8(2): 2221-2234.
[37] Su G, Liu L, Yang L, et al. Homing of endogenous bone marrow mesenchymal stem cells to rat infarcted myocardium via ultrasound-mediated recombinant SDF-1α denovirus in microbubbles[J]. Oncotarget, 2017, 9(1):477-487.
[38] Segers VF, Tokunou T, Higgins LJ, et al. Local delivery of protease-resistant stromal cell derived factor-1 for stem cell recruitment after myocardial infarction[J]. Circulation, 2007, 116(15):1683-1692.
[39] Ziff OJ, Bromage DI, Yellon DM. Therapeutic strategies utilizing SDF-1 alpha in ischaemic cardiomyopathy[J]. Cardiovasc Res, 2018, 114(3):358-367.
[40] Crop MJ, Baan CC, Korevaar SS, et al. Inflammatory conditions affect gene expression and function of human adipose tissue-derived mesenchymal stem cells[J]. Clin Exp Immunol, 2010, 162(3):474-486.
[41] Nguyen MM, Carlini AS, Chien MP, et al. Enzyme-responsive nanoparticles for targeted accumulation and prolonged retention in heart tissue after myocardial infarction[J]. Adv Mater, 2015, 27(37):5547-5552.
[42] Wang Z, Wang LL, Su X, et al. Rational transplant timing and dose of mesenchymal stromal cells in patients with acute myocardial infarction: a meta-analysis of randomized controlled trials[J]. Stem Cell Res Ther, 2017, 8(1):21.
[43] Wöhrle J, Von Scheidt F, Schauwecker P, et al. Impact of cell number and microvascular obstruction in patients with bone-marrow derived cell therapy: final results from the randomized, double-blind, placebo controlled intracoronary Stem Cell therapy in patients with Acute Myocardial Infarction(SCAMI)trial [J]. Clin Res Cardiol, 2013, 102(10):765-770.

备注/Memo

备注/Memo:
作者单位:215000 苏州大学医学部(陈龙); 215021 苏州大学附属儿童医院心内科(严文华)
通信作者:严文华,Email:whyan328@sina.com
更新日期/Last Update: 2019-02-25