索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]汪晓媛,汪晓洲.抗高血压药物相关基因多态性研究[J].国际心血管病杂志,2024,06:371-374.
点击复制

抗高血压药物相关基因多态性研究(PDF)

《国际心血管病杂志》[ISSN:1006-6977/CN:61-1281/TN]

期数:
2024年06期
页码:
371-374
栏目:
综述
出版日期:
2024-12-10

文章信息/Info

Title:
-
作者:
汪晓媛汪晓洲
810006 西宁,青海大学研究生院临床医学院(汪晓媛);810012 西宁,青海省心脑血管病专科医院高血压科(汪晓洲)
Author(s):
-
关键词:
高血压药物基因组学基因多态性
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-6583.2024.06.012
文献标识码:
-
摘要:
长期服用降压药物是控制高血压的重要措施,由于降压药物的疗效存在个体差异,对降压药物代谢相关位点进行基因多态性分析有利于指导临床用药。该文介绍血管紧张素转化酶抑制剂、血管紧张素受体阻滞剂、β受体阻滞剂、钙通道阻滞剂和利尿剂等药物的受体或代谢相关基因多态性对降压效果的影响。
Abstract:
-

参考文献/References

[1] Mills KT, Stefanescu A, He J. The global epidemiology of hypertension[J]. Nat Rev Nephrol, 2020, 16(4):223-237.
[2] 国家心血管病中心.中国心血管健康与疾病报告2021[M]. 北京: 科学出版社, 2022.
[3] Lupoli S, Salvi E, Barcella M, et al. Pharmacogenomics considerations in the control of hypertension[J]. Pharmacogenomics, 2015, 16(17):1951-1964.
[4] Hiltunen TP, Donner KM, Sarin AP, et al. Pharmacogenomics of hypertension: a genome-wide, placebo-controlled cross-over study, using four classes of antihypertensive drugs[J]. J Am Heart Assoc, 2015, 4(1):e001521.
[5] Rysz J, Franczyk B, Rysz-Górzyńska M, et al. Pharmacogenomics of hypertension treatment[J]. Int J Mol Sci,2020, 21(13):4709.
[6] Torrellas C, Carril JC, Cacabelos R. Benefits of pharmacogenetics in the management of hypertension[J]. J Pharmacogenomics Pharmacoproteomics, 2014, 5(2):126.
[7] 国家卫生计生委合理用药专家委员会, 中国医师协会高血压专业委员会. 高血压合理用药指南(第2版)[J]. 中国医学前沿杂志(电子版), 2017, 9(7):28-126.
[8] 中国高血压防治指南修订委员会, 高血压联盟(中国), 中华医学会心血管病学分会中国医师协会高血压专业委员会, 等.中国高血压防治指南(2018年修订版)[J]. 中国心血管杂志, 2019, 24(1):24-56.
[9] Oliveira-Paula GH, Pereira SC, Tanus-Santos JE, et al. Pharmacogenomics and hypertension: current insights[J]. Pharmgenomics Pers Med, 2019, 12:341-359.
[10] Yu HM, Lin SG, Zhong JC, et al. A core promoter variant of angiotensinogen gene and interindividual variation in response to angiotensin-converting enzyme inhibitors[J]. J Renin Angiotensin Aldosterone Syst, 2014, 15(4):540-546.
[11] El Alami HD, Ghazal H, Abidi O, et al. Relationship between insertion/deletion (I/D) polymorphism of angiotensin converting enzyme (ACE) gene and susceptibility to type 2 diabetes mellitus in the Middle East and North Africa Region: a meta-analysis[J]. Diabetes Metab Syndr, 2022, 16(1):102386.
[12] Rigat B, Hubert C, Alhenc-Gelas F, et al. An insertion/deletion polymorphism in the angiotensin Ⅰ-converting enzyme gene accounting for half the variance of serum enzyme levels[J]. J Clin Invest, 1990, 86(4):1343-1346.
[13] 易天骄, 赵友云. CYP3A5、CYP2C9、AGTR1基因多态性对单药治疗原发性高血压疗效的影响研究[J]. 国际检验医学杂志, 2022, 43(13):1607-1611.
[14] Liu Y, Kong XM, Jiang YW, et al. Association of AGTR1 A1166C and CYP2C9-3 gene polymorphisms with the antihypertensive effect of valsartan[J]. Int J Hypertens, 2022, 2022:7677252.
[15] Chen KP, Xiao P, Li GC, et al. Distributive characteristics of the CYP2C9 and AGTR1 genetic polymorphisms in Han Chinese hypertensive patients: a retrospective study[J]. BMC Cardiovasc Disord, 2021, 21(1):73.
[16] Yasar U, Forslund-Bergengren C, Tybring G, et al. Pharmacokinetics of losartan and its metabolite E-3174 in relation to the CYP2C9 genotype[J]. Clin Pharmacol Ther, 2002, 71(1):89-98.
[17] Yasar U, Tybring G, Hidestrand M, et al. Role of CYP2C9 polymorphism in losartan oxidation[J]. Drug MetabDispos, 2001, 29(7):1051-1056.
[18] Wain LV, Verwoert GC, O'Reilly PF, et al. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure[J]. Nat Genet, 2011, 43(10):1005-1011.
[19] Ishida Y, Matsushita M, Yoneshiro T, et al. Genetic evidence for involvement of β2-adrenergic receptor in brown adipose tissue thermogenesis in humans[J]. Int J Obes(Lond), 2024, 48(8):1110-1117.
[20] Liu HY, Xing XW, Huang LH, et al. The expression level of myocardial β1-adrenergic receptor affects metoprolol antihypertensive effects: a novel mechanism for interindividual difference[J]. Med Hypotheses, 2013, 81(1):71-72.
[21] Karlsson J, Lind L, Hallberg P, et al. Beta1-adrenergic receptor gene polymorphisms and response to beta1-adrenergic receptor blockade in patients with essential hypertension[J]. Clin Cardiol, 2004, 27(6):347-350.
[22] Aleong RG, Sauer WH, Davis G, et al. Prevention of atrial fibrillation by bucindolol is dependent on the beta?389 Arg/Gly adrenergic receptor polymorphism[J]. JACC Heart Fail, 2013, 1(4):338-344.
[23] Aleong RG, Sauer WH, Robertson AD, et al. Adrenergic receptor polymorphisms and prevention of ventricular arrhythmias with bucindolol in patients with chronic heart failure[J]. Circ Arrhythm Electrophysiol, 2013, 6(1):137-143.
[24] Liggett SB, Mialet-Perez J, Thaneemit-Chen S, et al. A polymorphism within a conserved beta(1)-adrenergic receptor motif alters cardiac function and beta-blocker response in human heart failure[J]. Proc Natl Acad Sci U S A, 2006, 103(30):11288-11293.
[25] Johnson JA, Liggett SB. Cardiovascular pharmacogenomics of adrenergic receptor signaling: clinical implications and future directions[J]. Clin Pharmacol Ther, 2011, 89(3):366-378.
[26] Beitelshees AL, Gong Y, Wang DX, et al. KCNMB1 genotype influences response to verapamil SR and adverse outcomes in the INternational VErapamil SR/Trandolapril STudy (INVEST)[J]. Pharmacogenet Genomics, 2007, 17(9):719-729.
[27] Niu YX, Gong Y, Langaee TY, et al. Genetic variation in the beta2 subunit of the voltage-gated calcium channel and pharmacogenetic association with adverse cardiovascular outcomes in the INternational VErapamil SR-Trandolapril STudy GENEtic Substudy (INVEST-GENES)[J]. Circ Cardiovasc Genet, 2010, 3(6):548-555.
[28] 景林德, 刘玉清, 贾友宏, 等. 体质量指数和L型钙离子通道α1C基因多态性对小剂量氨氯地平降压疗效的交互作用[J].中华高血压杂志, 2012, 20(1):61-66.
[29] Bremer T, Man A, Kask K, et al. CACNA1C polymorphisms are associated with the efficacy of calcium channel blockers in the treatment of hypertension[J]. Pharmacogenomics, 2006, 7(3):271-279.
[30] Rizzo F, Staub O. NEDD4-2 and salt-sensitive hypertension[J]. Curr Opin Nephrol Hypertens, 2015, 24(2):111-116.
[31] Furusho T, Sohara E, Mandai S, et al. Renal TNFα activates the WNK phosphorylation cascade and contributes to salt-sensitive hypertension in chronic kidney disease[J]. Kidney Int, 2020, 97(4):713-727.
[32] Li J, Zhu JH, Ren LY, et al. Association between NPPA promoter methylation and hypertension: results from Gusu cohort and replication in an independent sample[J]. Clin Epigenetics, 2020, 12(1):133.
[33] Kelley EF, Snyder EM, Alkhatib NS, et al. Economic evaluation of a pharmacogenomic multi-gene panel test to optimize anti-hypertension therapy:simulation study[J]. J Med Econ, 2018, 21(12):1246-1253.
[34] Xiao ZL, Yang M, Chen XB, et al. Personalized antihypertensive treatment guided by pharmacogenomics in China[J]. Cardiovasc Diagn Ther, 2022, 12(5):635-645.
[35] 高菊英, 刘丽宏, 万子睿, 等. 抗高血压药物基因多态性对呼伦贝尔地区三少民族高血压患者个体化治疗方案的参考价值[J]. 中国药物应用与监测, 2022, 19(3):145-149.
[36] 李柳, 王亚茹, 张娣, 等. 高血压个体化用药基因检测在Ⅲ级高血压患者中的应用[J]. 昆明医科大学学报, 2022, 43(4):112-117.
[37] 中华人民共和国国家卫生和计划生育委员会. 药物代谢酶和药物作用靶点基因检测技术指南(试行)概要[J]. 实用器官移植电子杂志, 2015, 3(5):257-267.
[38] Yu LH, Wang TT, Bai HD, et al. Association between cytochrome P450 2C19 polymorphism and clinical outcomes in clopidogrel-treated Uygur population with acute coronary syndrome: a retrospective study[J]. BMC Cardiovasc Disord, 2021, 21(1):391.

备注/Memo

备注/Memo:
基金项目:2022年青海省卫生健康系统重点课题(2022-wjzd-08);2022年青海省“昆仑英才·高端创新创业人才”项目
通信作者:汪晓洲,E-mail:wxz_1978@163.com
更新日期/Last Update: 2024-12-10