索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]李紫月,王献术,胡柏龙.NADPH氧化酶在心肌缺血再灌注损伤中的作用[J].国际心血管病杂志,2024,06:350-353.
点击复制

NADPH氧化酶在心肌缺血再灌注损伤中的作用(PDF)

《国际心血管病杂志》[ISSN:1006-6977/CN:61-1281/TN]

期数:
2024年06期
页码:
350-353
栏目:
综述
出版日期:
2024-12-10

文章信息/Info

Title:
-
作者:
李紫月王献术胡柏龙
550025 贵阳,贵州医科大学麻醉学院(李紫月,王献术);550004 贵阳,贵州医科大学附属医院麻醉科(胡柏龙)
Author(s):
-
关键词:
NADPH氧化酶心肌缺血再灌注损伤活性氧
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-6583.2024.06.006
文献标识码:
-
摘要:
NADPH氧化酶(NOX)在心肌缺血再灌注损伤(MIRI)中通过产生活性氧(ROS)介导氧化应激、线粒体功能障碍、铁死亡、细胞自噬及钙超负荷等多种机制,对心肌发挥双重作用。NOX2和NOX4是主要参与MIRI的NOX亚型,其中NOX2在再灌注早期引发急性炎症和细胞凋亡,而NOX4生成的过氧化氢(H2O2)在一定条件下具有保护作用,可通过激活自噬缓解细胞损伤。同时,NOX4也是铁死亡的关键因素。NOX抑制剂(如DPI、Apocynin及中药香草酸)显示出潜在治疗价值,能有效减少ROS生成并改善心肌功能。
Abstract:
-

参考文献/References

[1] Wang SN, Chen YF, Wu CC, et al. Trehalose alleviates myocardial ischemia/reperfusion injury by inhibiting NLRP3-mediated pyroptosis[J]. Appl Biochem Biotechnol, 2024, 196(3):1194-1210.
[2] Yang Y, Ma MQ, Su JN, et al. Acetylation, ferroptosis, and their potential relationships: implications in myocardial ischemia-reperfusion injury[J]. Am J Med Sci, 2023, 366(3):176-184.
[3] Khayrullina G, Bermudez S, Hopkins D, et al. Differential effects of NOX2 and NOX4 inhibition after rodent spinal cord injury[J]. PLoS One, 2023, 18(3):e0281045.
[4] Matsushima S, Sadoshima J. Yin and yang of NADPH oxidases in myocardial ischemia-reperfusion[J]. Antioxidants (Basel), 2022, 11(6):1069.
[5] Jian J, Wang D, Xiong YF, et al. Puerarin alleviated oxidative stress and ferroptosis during renal fibrosis induced by ischemia/reperfusion injury via TLR4/Nox4 pathway in rats[J]. Acta Cir Bras, 2023, 38:e382523.
[6] Braunersreuther V, Montecucco F, Ashri M, et al. Role of NADPH oxidase isoforms NOX1, NOX2 and NOX4 in myocardial ischemia/reperfusion injury[J]. J Mol Cell Cardiol, 2013, 64:99-107.
[7] Cipriano A, Viviano M, Feoli A, et al. NADPH oxidases: from molecular mechanisms to current inhibitors[J]. J Med Chem, 2023, 66(17):11632-11655.
[8] Sofiullah SSM, Murugan DD, Muid SA, et al. Natural bioactive compounds targeting NADPH oxidase pathway in cardiovascular diseases[J]. Molecules, 2023, 28(3):1047.
[9] Liu YZ, Liang SY, Shi DF, et al. A predicted structure of NADPH Oxidase 1 identifies key components of ROS generation and strategies for inhibition[J]. PLoS One, 2023, 18(5):e0285206.
[10] Vendrov AE, Stevenson MD, Lozhkin A, et al. Renal NOXA1/NOX1 signaling regulates epithelial sodium channel and sodium retention in angiotensin Ⅱ-induced hypertension[J]. Antioxid Redox Signal, 2022, 36(7/9):550-566.
[11] Nabeebaccus AA, Reumiller CM, Shen J, et al. The regulation of cardiac intermediary metabolism by NADPH oxidases[J]. Cardiovasc Res, 2023, 118(17):3305-3319.
[12] Huang Q, Chen Y. NADPH oxidase 4 contributes to oxidative stress in a mouse model of myocardial infarction[J]. Physiol Res, 2023, 72(2):177-186.
[13] He JF, Liu DY, Zhao LX, et al. Myocardial ischemia/reperfusion injury: mechanisms of injury and implications for management (Review)[J]. Exp Ther Med, 2022, 23(6):430.
[14] Maslov LN, Naryzhnaya NV, Sirotina M, et al. Do reactive oxygen species damage or protect the heart in ischemia and reperfusion? Analysis on experimental and clinical data[J]. J Biomed Res, 2023, 37(4):268-280.
[15] Vekic J, Stromsnes K, Mazzalai S, et al. Oxidative stress, atherogenic dyslipidemia, and cardiovascular risk[J]. Biomedicines, 2023, 11(11):2897.
[16] Zhao YC, Xiong WD, Li CF, et al. Hypoxia-induced signaling in the cardiovascular system: pathogenesis and therapeutic targets[J]. Signal Transduct Target Ther, 2023, 8(1):431.
[17] Hwang S, Yang S, Park K, et al. Induction of fatty acid oxidation underlies DNA damage-induced cell death and ameliorates obesity-driven chemoresistance[J]. Adv Sci (Weinh), 2024, 11(10):e2304702.
[18] Yalameha B, Nejabati HR, Nouri M. Cardioprotective potential of vanillic acid[J]. Clin Exp Pharmacol Physiol, 2023, 50(3):193-204.
[19] Ko SF, Sung PH, Yang CC, et al. Combined therapy with dapagliflozin and entresto offers an additional benefit on improving the heart function in rat after ischemia-reperfusion injury[J]. Biomed J, 2023, 46(3):100546.
[20] Wang ZK, Yang NN, Hou YJ, et al. L-arginine-loaded gold nanocages ameliorate myocardial ischemia/reperfusion injury by promoting nitric oxide production and maintaining mitochondrial function[J]. Adv Sci (Weinh), 2023, 10(26):e2302123.
[21] Ludwig K, Le BJ, Muthukrishnan SD, et al. Nicotinamide adenine dinucleotide phosphate oxidase promotes glioblastoma radiation resistance in a phosphate and tensin homolog-dependent manner[J]. Antioxid Redox Signal, 2023, 39(13/15):890-903.
[22] Jethva J, Lichtenauer S, Schmidt-Schippers R, et al. Mitochondrial alternative NADH dehydrogenases NDA1 and NDA2 promote survival of reoxygenation stress in Arabidopsis by safeguarding photosynthesis and limiting ROS generation[J]. New Phytol, 2023, 238(1):96-112.
[23] Zhang YX, Murugesan P, Huang K, et al. NADPH oxidases and oxidase crosstalk in cardiovascular diseases: novel therapeutic targets[J]. Nat Rev Cardiol, 2020, 17(3):170-194.
[24] Shan X, Lv ZY, Yin MJ, et al. The protective effect of cyanidin-3-glucoside on myocardial ischemia-reperfusion injury through ferroptosis[J]. Oxid Med Cell Longev, 2021, 2021:8880141.
[25] Ji JJ, Chen SY, Yang ZW, et al. Delivery of Mir-196c-3p with NIR-Ⅱ light-triggered gel attenuates cardiomyocyte ferroptosis in cardiac ischemia-reperfusion injury[J]. Nanomedicine, 2023, 47:102618.
[26] Wu ZH, Bai YP, Qi YJ, et al. Metformin ameliorates ferroptosis in cardiac ischemia and reperfusion by reducing NOX4 expression via promoting AMPKα[J]. Pharm Biol, 2023, 61(1):886-896.
[27] Yin XR, Guo ZY, Song CL. AMPK, a key molecule regulating aging-related myocardial ischemia-reperfusion injury[J]. Mol Biol Rep, 2024, 51(1):257.
[28] Yang Y, Lin XH. Potential relationship between autophagy and ferroptosis in myocardial ischemia/reperfusion injury[J]. Genes Dis, 2023, 10(6):2285-2295.
[29] Ma DJ, Hwang JS, Noh KB, et al. Role of NADPH oxidase 4 in corneal endothelial cells is mediated by endoplasmic reticulum stress and autophagy[J]. Antioxidants (Basel), 2023, 12(6):1228.
[30] Han YL, Li XW, Yang L, et al. Ginsenoside Rg1 attenuates cerebral ischemia-reperfusion injury due to inhibition of NOX2-mediated Calcium homeostasis dysregulation in mice[J]. J Ginseng Res, 2022, 46(4):515-525.
[31] Tu DZ, Velagapudi R, Gao Y, et al. Activation of neuronal NADPH oxidase NOX2 promotes inflammatory neurodegeneration[J]. Free Radic Biol Med, 2023, 200:47-58.
[32] Mohammad A, Babiker F, Al-Bader M. Effects of apocynin, a NADPH oxidase inhibitor, in the protection of the heart from ischemia/reperfusion injury[J]. Pharmaceuticals (Basel), 2023, 16(4):492.
[33] Yang KM, Velagapudi S, Akhmedov A, et al. Chronic SIRT1 supplementation in diabetic mice improves endothelial function by suppressing oxidative stress[J]. Cardiovasc Res, 2023, 119(12):2190-2201.
[34] Liao J, Peng BY, Huang GY, et al. Inhibition of NOX4 with GLX351322 alleviates acute ocular hypertension-induced retinal inflammation and injury by suppressing ROS mediated redox-sensitive factors activation[J]. Biomed Pharmacother, 2023, 165:115052.
[35] Ali F, Alom S, Ali SR, et al. Ebselen: a review on its synthesis, derivatives, anticancer efficacy and utility in combating SARS-COV-2[J]. Mini Rev Med Chem, 2024, 24(12):1203-1225.
[36] Wu YK, Shi H, Xu YG, et al. Selenoprotein gene mRNA expression evaluation during renal ischemia-reperfusion injury in rats and ebselen intervention effects[J]. Biol Trace Elem Res, 2023, 201(4):1792-1805.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(82160951);贵州医科大学大学生创新创业训练计划项目(S202210660085);贵阳市科技计划项目(筑科合同[2024]-2-27)
通信作者:胡柏龙,E-mail :375896605@qq.com
更新日期/Last Update: 2024-12-10