|本期目录/Table of Contents|

[1]黄舒影,陈骁楠,张俊峰,等.射血分数保留的心力衰竭小鼠端粒缩短的研究[J].国际心血管病杂志,2024,04:231-236.
 HUANG Shuying,CHEN Xiaonan,ZHANG Junfeng,et al.Effect of telomere attrition in mice of heart failure with preserved ejection fraction[J].International Journal of Cardiovascular Disease,2024,04:231-236.
点击复制

射血分数保留的心力衰竭小鼠端粒缩短的研究(PDF)

《国际心血管病杂志》[ISSN:1006-6977/CN:61-1281/TN]

期数:
2024年04期
页码:
231-236
栏目:
基础研究
出版日期:
2024-07-31

文章信息/Info

Title:
Effect of telomere attrition in mice of heart failure with preserved ejection fraction?
作者:
黄舒影陈骁楠张俊峰张绘莉
作者单位:200011 上海交通大学医学院附属第九人民医院心内科
Author(s):
HUANG Shuying CHEN Xiaonan ZHANG Junfeng ZHANG Huili
Department of Cardiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai? 200011, China
关键词:
射血分数保留的心力衰竭端粒缩短基因敲除
Keywords:
Heart failure with preserved ejection fraction Telomere attrition Gene knock-out
分类号:
-
DOI:
10.3969/j.issn.1673-6583.2024.04.011
文献标识码:
-
摘要:
目的:探讨端粒缩短与射血分数保留的心力衰竭(HFpEF)间的关系。方法:野生型C57BL/6J小鼠、第二代端粒酶敲除(mTRG2)和第三代mTRKO(mTRG3)小鼠简单随机抽样法分为对照组和HFpEF组,每组各8只。对照组给予标准饲料和饮水,HFpEF组给予60%高脂饲料和含0.5g/LN-硝基-L-精氨酸甲酯(L-NAME)的饮水,造模16周。造模开始后每2周检测小鼠左室射血分数(LVEF)、二尖瓣口舒张早期和晚期血流速度峰值的比值(E/A)、舒张早期二尖瓣口血流速度峰值和二尖瓣环运动速度峰值的比值(
Abstract:
Objective: To explore the relationship between telomere attrition and heart failure with preserved ejection fraction (HFpEF).? Methods: Wild-type C57BL/6J mice, second-generation mTRKO mice(mTRG2) and third-generation mTRKO mice(mTRG3) were divided into c

参考文献/References

[1] Dunlay SM, Roger VL, Redfield MM. Epidemiology of heart failure with preserved ejection fraction[J]. Nat Rev Cardiol, 2017, 14(10):591-602.
[2] Aguado J, d'Adda di Fagagna F, Wolvetang E. Telomere transcription in ageing[J]. Ageing Res Rev, 2020, 62:32565330.
[3] López-Otín C, Blasco MA, Partridge L, et al. Hallmarks of aging:an expanding universe[J]. Cell, 2023, 186(2):243-278.
[4] Schiattarella GG, Altamirano F, Tong D, et al. Nitrosative stress drives heart failure with preserved ejection fraction[J]. Nature, 2019, 568(7752):351-356.
[5] Chen XN, Lin H, Xiong WY, et al. p53-dependent mitochondrial compensation in heart failure with preserved ejection fraction[J]. J Am Heart Assoc, 2022, 11(11):e024582.
[6] 陈骁楠, 张俊峰, 王长谦, 等. 小鼠射血分数保留心力衰竭模型的建立[J]. 上海交通大学学报(医学版), 2021, 41(5):565-570.
[7] Chakravarti D, LaBella KA, DePinho RA. Telomeres: history, health, and hallmarks of aging[J]. Cell, 2021, 184(2):306-322.
[8] Borlaug BA. Evaluation and management of heart failure with preserved ejection fraction[J]. Nat Rev Cardiol, 2020, 17(9):559-573.
[9] Cai NS, Wu Y, Huang Y. Induction of accelerated aging in a mouse model[J]. Cells, 2022, 11(9):1418.
[10] Deng Y, Xie M, Li Q, et al. Correction to: targeting mitochondria-inflammation circuit by β-hydroxybutyrate mitigates HFpEF[J]. Circ Res, 2022, 130(7):232-245.
[11] Chen P, Chen FC, Lei JX, et al. Activation of the miR-34a-mediated SIRT1/mTOR signaling pathway by urolithin a attenuates D-galactose-induced brain aging in mice[J]. Neurotherapeutics, 2019, 16(4):1269-1282.
[12] Lesnefsky EJ, Chen Q, Hoppel CL. Mitochondrial metabolism in aging heart[J]. Circ Res, 2016, 118(10):1593-1611.
[13] de Boer M, Te Lintel Hekkert M, Chang J, et al. DNA repair in cardiomyocytes is critical for maintaining cardiac function in mice[J]. Aging Cell, 2023, 22(3):e13768.
[14] Henpita C, Vyas R, Healy CL, et al. Loss of DNA repair mechanisms in cardiac myocytes induce dilated cardiomyopathy[J]. Aging Cell, 2023, 22(4):e13782.
[15] Papait R, Serio S, Condorelli G. Role of the epigenome in heart failure[J]. Physiol Rev, 2020, 100(4):1753-1777.
[16] Etchegaray JP, Mostoslavsky R. Interplay between metabolism and epigenetics: anuclear adaptation to environmental changes[J]. Mol Cell, 2016, 62(5):695-711.
[17] Packer M. Cardioprotective effects of sirtuin-1 and its downstream effectors: potential role in mediating the heart failure benefits of SGLT2 (sodium-glucose cotransporter 2) inhibitors[J]. Circ Heart Fail, 2020, 13(9):e007197.
[18] Sundaresan NR, Gupta M, Kim G, et al. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice[J]. J Clin Invest, 2009, 119(9):2758-2771.
[19] Wu XQ, Liu H, Brooks A, et al. SIRT6 mitigates heart failure with preserved ejection fraction in diabetes[J]. Circ Res, 2022, 131(11):926-943.

备注/Memo

备注/Memo:
基金项目:上海市自然科学基金(21ZR1438000)
通信作者:张绘莉, E-mail:huilizhang815@163.com
更新日期/Last Update: 2024-07-31