索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]徐敬娅,张春蕾,李宝龙,等.心源性休克的预后相关指标[J].国际心血管病杂志,2024,04:227-230.
点击复制

心源性休克的预后相关指标(PDF)

《国际心血管病杂志》[ISSN:1006-6977/CN:61-1281/TN]

期数:
2024年04期
页码:
227-230
栏目:
综述
出版日期:
2024-07-31

文章信息/Info

Title:
-
作者:
徐敬娅张春蕾李宝龙赵炜明
作者单位:150040 哈尔滨,黑龙江中医药大学基础医学院
Author(s):
-
关键词:
心源性休克血流动力学预后
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-6583.2024.04.010
文献标识码:
-
摘要:
心源性休克(CS)是因心脏泵衰竭引起全身血液灌注减少,导致患者出现严重的循环系统障碍和多器官衰竭,其病情进展快、预后不良。该文介绍可用于预测CS病情进展和预后的生物化学指标、血流动力学指标及相关系统评分,旨在为患者提供更好的诊断和治疗。
Abstract:
-

参考文献/References

[1] Baran DA, Grines CL, Bailey S, et al. SCAI clinical expert consensus statement on the classification of cardiogenic shock:this document was endorsed by the American College of Cardiology (ACC), the American Heart Association (AHA), the Society of Critical Care Medicine (SCCM), and the Society of Thoracic Surgeons (STS) in April 2019[J]. Catheter Cardiovasc Interv, 2019, 94(1):29-37.
[2] Lucas JH, Olivencia ML, Pablo RD, et al. Early routine use of V-A ECMO in patients with myocardial infarction and cardiogenic shock, is it a poor choice?[J]. Med Intensiva (Engl Ed), 2023, 47(12):739-740.
[3] Chien SC, Wang CA, Liu HY, et al. Comparison of the prognosis among in-hospital survivors of cardiogenic shock based on etiology: AMI and non-AMI[J]. Ann Intensive Care, 2024, 14(1):74.
[4] Ghionzoli N, Sciaccaluga C, Mandoli GE, et al. Cardiogenic shock and acute kidney injury: the rule rather than the exception[J]. Heart Fail Rev, 2021, 26(3):487-496.
[5] Tarvasm?ki T, Haapio M, Mebazaa A, et al. Acute kidney injury in cardiogenic shock: definitions, incidence, haemodynamic alterations, and mortality[J]. Eur J Heart Fail, 2018, 20(3):572-581.
[6] Liu EQ, Zeng CL. Blood urea nitrogen and in-hospital mortality in critically ill patients with cardiogenic shock: analysis of the MIMIC-Ⅲ database[J]. Biomed Res Int, 2021, 2021:5948636.
[7] Sun D, Wei CM, Li Z. Blood urea nitrogen to creatinine ratio is associated with in-hospital mortality among critically ill patients with cardiogenic shock[J]. BMC Cardiovasc Disord, 2022, 22(1):258.
[8] EI Hadi H, Di Vincenzo A, Vettor R, et al. Relationship between heart disease and liver disease: a two-way street[J]. Cells, 2020, 9(3):567.
[9] Dalos D, Binder C, Duca F, et al. Serum levels of gamma-glutamyltransferase predict outcome in heart failure with preserved ejection fraction[J]. Sci Rep, 2019, 9(1):18541.
[10] Liu X, Shao Y, Han L, et al. Emerging evidence linking the liver to the cardiovascular system: liver-derived secretory factors[J]. J Clin Transl Hepatol, 2023, 11(5):1246-1255.
[11] Takeishi R, Misaka T, Ichijo Y, et al. Increases in hepatokine selenoprotein P levels are associated with hepatic hypoperfusion and predict adverse prognosis in patients with heart failure[J]. J Am Heart Assoc, 2022, 11(11):e024901.
[12] Büttner P, Obradovic D, Wunderlich S, et al. Selenoprotein P in myocardial infarction with cardiogenic shock[J]. Shock, 2020, 53(1):58-62.
[13] Zhu LH, Fu WX, Zhu BY, et al. An integrated microfluidic electrochemiluminescence device for point-of-care testing of acute myocardial infarction[J]. Talanta, 2023, 262:124626.
[14] Frydland M, M?ller JE, Lindholm MG, et al. Biomarkers predictive of late cardiogenic shock development in patients with suspected ST-elevation myocardial infarction[J]. Eur Heart J Acute Cardiovasc Care, 2020, 9(6):557-566.
[15] Sharma YP, Kanabar K, Santosh K, et al. Role of N-terminal pro-B-type natriuretic peptide in the prediction of outcomes in ST-elevation myocardial infarction complicated by cardiogenic shock[J]. Indian Heart J, 2020, 72(4):302-305.
[16] Nakamura M, Imamura T, Ueno H, et al. Impact of the elevated angiopoietin-2 levels during Impella support on the short-term prognosis[J]. J Artif Organs, 2023, 26(3):184-191.
[17] Romejko K, Markowska M, Niemczyk S. The review of current knowledge on neutrophil gelatinase-associated lipocalin (NGAL) [J]. Int J Mol Sci, 2023, 24(13):10470.
[18] Frydland M, M?gelvang R, M?ller JE, et al. Neutrophil gelatinase-associated lipocalin (NGAL) measured at admission is associated with development of late cardiogenic shock and mortality in patients with ST-segment elevation myocardial infarction[J]. Shock, 2021, 56(2):255-259.
[19] Klein A, Wiberg S, Hassager C, et al. Admission leukocyte count is associated with late cardiogenic shock development and all-cause 30-day mortality in patients with ST-elevation myocardial infarction[J]. Shock, 2020, 53(3):299-306.
[20] Yu Y, Liu Y, Ling XY, et al. The neutrophil percentage-to-albumin ratio as a new predictor of all-cause mortality in patients with cardiogenic shock[J]. Biomed Res Int, 2020, 2020:7458451.
[21] Reina-Couto M, Silva-Pereira C, Pereira-Terra P, et al. Endothelitis profile in acute heart failure and cardiogenic shock patients: endocan as a potential novel biomarker and putative therapeutic target[J]. Front Physiol, 2022, 13:965611.
[22] Cheng WK, Fuernau G, Desch S, et al. Circulating galectin-3 in patients with cardiogenic shock complicating acute myocardial infarction treated with mild hypothermia: a biomarker sub-study of the SHOCK-COOL trial[J]. J Clin Med, 2022, 11(23):7168.
[23] Cheng WK, Fuernau G, Desch S, et al. Circulating monocyte chemoattractant protein-1 in patients with cardiogenic shock complicating acute myocardial infarction treated with mild hypothermia: a biomarker substudy of SHOCK-COOL trial[J]. J Cardiovasc Dev Dis, 2022, 9(8):280.
[24] Lindholm MG, Hongisto M, Lassus J, et al. Serum lactate and a relative change in lactate as predictors of mortality in patients with cardiogenic shock-results from the Cardshock study[J]. Shock, 2020, 53(1):43-49.
[25] Marbach JA, Di Santo P, Kapur NK, et al. Lactate clearance as a surrogate for mortality in cardiogenic shock: insights from the DOREMI trial[J]. J Am Heart Assoc, 2022, 11(6):e023322.
[26] Basir MB, Kapur NK, Patel K, et al. Improved outcomes associated with the use of shock protocols: updates from the National Cardiogenic Shock Initiative[J]. Catheter Cardiovasc Interv, 2019, 93(7):1173-1183.
[27] Garan AR, Kanwar M, Thayer KL, et al. Complete hemodynamic profiling with pulmonary artery catheters in cardiogenic shock is associated with lower in-hospital mortality[J]. JACC Heart Fail, 2020, 8(11):903-913.
[28] Guo C, Teng HB, Xu HB, et al. Impact of shock index before IABP implantation on recent prognosis of patients with cardiogenic shock complicating acute myocardial infarction[J]. Acta Cardiol, 2023, 78(2):241-247.
[29] Braik N, Guedeney P, Behnes M, et al. Impact of chronic total occlusion and revascularization strategy in patients with infarct-related cardiogenic shock: a subanalysis of the culprit-shock trial[J]. Am Heart J, 2021, 232:185-193.
[30] Merdji H, Curtiaud A, Aheto A, et al. Performance of early capillary refill time measurement on outcomes in cardiogenic shock: an observational, prospective multicentric study[J]. Am J Respir Crit Care Med, 2022, 206(10):1230-1238.
[31] Wijntjens GW, Fengler K, Fuernau G, et al. Prognostic implications of microcirculatory perfusion versus macrocirculatory perfusion in cardiogenic shock: a CULPRIT-SHOCK substudy[J]. Eur Heart J Acute Cardiovasc Care, 2020, 9(2):108-119.
[32] Mongkolpun W, Orbegozo D, Cordeiro CPR, et al. Alterations in skin blood flow at the fingertip are related to mortality in patients with circulatory shock[J]. Crit Care Med, 2020, 48(4):443-450.
[33] Harjola VP, Lassus J, Sionis A, et al. Clinical picture and risk prediction of short-term mortality in cardiogenic shock[J]. Eur J Heart Fail, 2015, 17(5):501-509.
[34] Auffret V, Cottin Y, Leurent G, et al. Predicting the development of in-hospital cardiogenic shock in patients with ST-segment elevation myocardial infarction treated by primary percutaneous coronary intervention: the ORBI risk score[J]. Eur Heart J, 2018, 39(22):2090-2102.
[35] P?ss J, K?ster J, Fuernau G, et al. Risk stratification for patients in cardiogenic shock after acute myocardial infarction[J]. J Am Coll Cardiol, 2017, 69(15):1913-1920.
[36] Iborra-Egea O, Bayes-Genis A. Translational proteomics in cardiogenic shock: from benchmark to bedside[J]. J Geriatr Cardiol, 2022, 19(2):158-162.
[37] Luo Y, Wang Z, Wang C. Improvement of APACHE Ⅱ score system for disease severity based on XGBoost algorithm[J]. BMC Med Inform Decis Mak, 2021, 21(1):237.
[38] ?lvarez-Avello JM, Hernández-Pérez FJ, Herrero-Cano ?, et al. Usefulness of severity scales for cardiogenic shock in-hospital mortality. Proposal for a new prognostic model[J]. Rev Esp Anestesiol Reanim (Engl Ed), 2022, 69(2):79-87.
[39] Karami Niaz M, Fard Moghadam N, Aghaei A, et al. Evaluation of mortality prediction using SOFA and APACHE Ⅳ tools in trauma and non-trauma patients admitted to the ICU[J]. Eur J Med Res, 2022, 27(1):188.

备注/Memo

备注/Memo:
基金项目:黑龙江省自然科学基金(面上项目)(H2015017);哈尔滨市科技创新人才研究专项基金项目(青年后备人才计划项目) (2016RAQYJ186)
通信作者:赵炜明, E-mail:zhaowm1969@126.com
更新日期/Last Update: 2024-07-31