索引超出了数组界限。
[1] Writing Committee Members. ACC/AHA Joint Committee
Members. 2022 AHA/ACC/HFSA guideline for the management
of heart failure[J]. J Card Fail, 2022, 28(5):e1-e167.
[2] McDonagh TA, Metra M, Adamo M, et al. 2021 ESC Guidelines
for the diagnosis and treatment of acute and chronic heart
failure[J]. Eur Heart J, 2021, 42(36):3599-3726.
[3] Loescher CM, Hobbach AJ, Linke WA. Titin (TTN):
from molecule to modifications, mechanics, and medical
significance[J]. Cardiovasc Res, 2022, 118(14):2903-2918.
[4] Frisk M, Le C, Shen X, et al. Etiology-dependent impairment
of diastolic cardiomyocyte calcium homeostasis in heart failure
with preserved ejection fraction[J]. J Am Coll Cardiol, 2021,
77(4):405-419.
[5] Popovic D, Alogna A, Omar M, et al. Ventricular stiffening
and chamber contracture in heart failure with higher ejection
fraction[J]. Eur J Heart Fail, 2023, 25(5):657-668.
[6] Fernandes GC, Fernandes A, Cardoso R, et al. Association of
SGLT2 inhibitors with arrhythmias and sudden cardiac death
in patients with type 2 diabetes or heart failure: a meta-analysis
of 34 randomized controlled trials[J]. Heart Rhythm, 2021,
18(7):1098-1105.
[7] Sorimachi H, Obokata M, Takahashi N, et al. Pathophysiologic
importance of visceral adipose tissue in women with heart
failure and preserved ejection fraction[J]. Eur Heart J, 2021,
42(16):1595-1605.
[8] Yasenjiang M, Cheng H, Guo Z, et al. Correlation between
pulmonary vascular performance and hemodynamics in patients
with pulmonary arterial hypertension[J]. Clin Exp Hypertens,
2023, 45(1):2185253.
[9] Saavedra-Alvarez A, Pereyra KV, Toledo C, et al. Vascular
dysfunction in HFpEF: potential role in the development,
maintenance, and progression of the disease[J]. Front Cardiovasc
Med, 2022, 9:1070935.
[10] Wu X, Liu H, Brooks A, et al. SIRT6 mitigates heart failure
with preserved ejection fraction in diabetes[J]. Circ Res, 2022,
131(11):926-943.
[11] Jhund PS, Kondo T, Butt JH, et al. Dapagliflozin across the range
of ejection fraction in patients with heart failure: a patient-level,
pooled meta-analysis of DAPA-HF and DELIVER[J]. Nat Med,
2022, 28(9):1956-1964.
[12] Anker SD, Butler J, Filippatos G, et al. Baseline characteristics
of patients with heart failure with preserved ejection fraction in the EMPEROR-Preserved trial[J]. Eur J Heart Fail, 2020,
22(12):2383-2392.
[13] Chung CC, Lin YK, Chen YC, et al. Empagliflozin suppressed
cardiac fibrogenesis through sodium-hydrogen exchanger
inhibition and modulation of the calcium homeostasis[J].
Cardiovasc Diabetol, 2023, 22(1):27.
[14] Wu J, Liu T, Shi S, et al. Dapagliflozin reduces the vulnerability
of rats with pulmonary arterial hypertension-induced right heart
failure to ventricular arrhythmia by restoring calcium handling[J].
Cardiovasc Diabetol, 2022, 21(1):197.
[15] Op den Kamp YJM, Gemmink A, de Ligt M, et al. Effects of
SGLT2 inhibitor dapagliflozin in patients with type 2 diabetes
on skeletal muscle cellular metabolism[J]. Mol Metab, 2022,
66:101620.
[16] Mason T, Coelho-Filho OR, Verma S, et al. Empagliflozin
reduces myocardial extracellular volume in patients with type
2 diabetes and coronary artery disease[J]. JACC Cardiovasc
Imaging, 2021, 14(6):1164-1173.
[17] Ferrannini E, Baldi S, Frascerra S, et al. Shift to fatty substrate
utilization in response to sodium-glucose cotransporter 2
inhibition in subjects without diabetes and patients with type 2
diabetes[J]. Diabetes, 2016, 65(5):1190-1195.
[18] Hundertmark MJ, Adler A, Antoniades C, et al. Assessment
of cardiac energy metabolism, function, and physiology in
patients with heart failure taking empagliflozin: the randomized,
controlled EMPA-VISION trial[J]. Circulation, 2023,
147(22):1654-1669.
[19] Deng Y, Xie M, Li Q, et al. Targeting mitochondria-inflammation
circuit by β-hydroxybutyrate mitigates HFpEF[J]. Circ Res.
2021, 128(2):232-245.
[20] Szarek M, Bhatt DL, Steg PG, et al. Effect of sotagliflozin
on total hospitalizations in patients with type 2 diabetes and
worsening heart failure: a randomized trial[J]. Ann Intern Med,
2021, 174(8):1065-1072.
[21] Bhatt DL, Szarek M, Pitt B, et al. Sotagliflozin in patients with
diabetes and chronic kidney disease[J]. N Engl J Med, 2021,
384(2):129-139.
[22] Kresoja KP, Rommel KP, Fengler K, et al. Renal sympathetic
denervation in patients with heart failure with preserved ejection
fraction[J]. Circ Heart Fail, 2021, 14(3):e007421.
[23] Liu H, Huang Y, Zhao Y, et al. Inflammatory macrophage
interleukin-1β mediates high-fat diet-induced heart failure with
preserved ejection fraction[J]. JACC Basic Transl Sci, 2022,
8(2):174-185.
[24] Wei R, Wang W, Pan Q, et al. Effects of SGLT-2 inhibitors on
vascular endothelial function and arterial stiffness in subjects
with type 2 diabetes: a systematic review and meta-analysis of
randomized controlled trials[J]. Front Endocrinol (Lausanne),
2022, 13:826604.
[25] Myhre PL, Vaduganathan M, Claggett B, et al. B-type
natriuretic peptide during treatment with sacubitril/valsartan: the
PARADIGM-HF trial[J]. J Am Coll Cardiol, 2019, 73(11):1264-
1272.
[26] Solomon SD, McMurray JJV, Anand IS, et al. Angiotensinneprilysin
inhibition in heart failure with preserved ejection
fraction[J]. N Engl J Med, 2019, 381(17):1609-1620.
[27] Widiarti W, Sukmajaya AC, Nugraha D, et al. Cardioprotective
properties of glucagon-like peptide-1 receptor agonists in type
2 diabetes mellitus patients: a systematic review[J]. Diabetes
Metab Syndr, 2021, 15(3):837-843.
[28] Akar FG, Young LH. NAD repletion therapy: a silver bullet for
HFpEF?[J]. Circ Res, 2021, 128(11):1642-1645.
[29] Tsch?p M, Nogueiras R, Ahrén B. Gut hormone-based
pharmacology: novel formulations and future possibilities for
metabolic disease therapy[J]. Diabetologia, 2023, 66(10):1796-
1808.
[30] Filippatos G, Anker SD, Agarwal R, et al. Finerenone reduces
risk of incident heart failure in patients with chronic kidney
disease and type 2 diabetes: analyses from the FIGARO-DKD
trial[J]. Circulation, 2022, 145(6):437-447.