[1] Lu C, Yang Y, Zhu Y, et al. An intervention target for myocardial fibrosis: autophagy[J]. Biomed Res Int, 2018, 2018:6215916.
[2] 洪子, 杨巍. 心肌纤维化发病机制及治疗的研究进展[J]. 临床与病理杂志, 2022, 42(1):220-225.
[3] Levine B, Kroemer G. Autophagy in the pathogenesis of disease[J]. Cell, 2008, 132(1):27-42.
[4] Pellegrini L, Foglio E, Pontemezzo E, et al. HMGB1 and repair:focus on the heart[J]. Pharmacol Ther, 2019, 196:160-182.
[5] Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal[J]. Nat Rev Immunol, 2005, 5(4):331-342.
[6] Park S, Ranjbarvaziri S, Zhao P, et al. Cardiac fibrosis is associated with decreased circulating levels of full-length CILP in heart failure[J]. JACC Basic Transl Sci, 2020, 5(5):432-443.
[7] Fan D, Takawale A, Lee J, et al. Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease[J]. Fibrogenesis Tissue Repair, 2012, 5(1):15.
[8] Travers JG, Kamal FA, Robbins J, et al. Cardiac fibrosis: the fibroblast awakens[J]. Circ Res, 2016, 118(6):1021-1040.
[9] Parim B, Sathibabu Uddandrao VV, Saravanan G. Diabetic cardiomyopathy: molecular mechanisms, detrimental effects of conventional treatment, and beneficial effects of natural therapy[J]. Heart Fail Rev, 2019, 24(2):279-299.
[10] Yun W, Qian L, Yuan R, et al. Periplocymarin protects against myocardial fibrosis induced by β-adrenergic activation in mice[J]. Biomed Pharmacother, 2021, 139:111562.
[11] Li Y, Liu M, Song X, et al. Exogenous hydrogen sulfide ameliorates diabetic myocardial fibrosis by inhibiting cell aging through SIRT6/AMPK autophagy[J]. Front Pharmacol, 2020, 11:1150.
[12] 林晓欣, 王振华. miR-29a/HMGB1信号通路在高糖高脂诱导的心肌细胞纤维化中的作用[J]. 中国临床药理学与治疗学, 2020, 25(11):1223-1232.
[13] 张妍, 田立群, 冯莹, 等. 抑制HMGB1对心肌梗死大鼠模型心肌纤维化的影响及机制研究[J]. 中国免疫学杂志, 2021, 37(8):927-930.
[14] Vicentino ARR, Carneiro VC, Allonso D, et al. Emerging role of HMGB1 in the pathogenesis of schistosomiasis liver fibrosis[J]. Front Immunol, 2018, 9:1979.
[15] Wu RN, Yu TY, Zhou JC, et al. Targeting HMGB1 ameliorates cardiac fibrosis through restoring TLR2-mediated autophagy suppression in myocardial fibroblasts[J]. Int J Cardiol, 2018, 267:156-162.
[16] Ackermann MA. Links between mTOR and the immunoproteasome:therapeutic targets for cardiac hypertrophy?[J]. J Mol Cell Cardiol, 2015, 89(Pt B):113-115.
[17] Yan L, Vatner DE, Kim SJ, et al. Autophagy in chronically ischemic myocardium[J]. Proc Natl Acad Sci U S A, 2005, 102(39):13807-13812.
[18] Kheloufi M, Rautou PE, Boulanger CM. Autophagy in the cardiovascular system[J]. Med Sci (Paris), 2017, 33(3):283-289.
[19] Pankiv S, Clausen TH, Lamark T, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy[J]. J Biol Chem, 2007, 282(33):24131-24145.
[20] Mathew R, Karp CM, Beaudoin B, et al. Autophagy suppresses tumorigenesis through elimination of p62[J]. Cell, 2009, 137(6):1062-1075.
[21] Tang D, Kang R, Zeh HJ, et al. High-mobility group box 1, oxidative stress, and disease[J]. Antioxid Redox Signal, 2011, 14(7):1315-1335.
[22] Wu CZ, Zheng JJ, Bai YH, et al. HMGB1/RAGE axis mediates the apoptosis, invasion, autophagy, and angiogenesis of the renal cell carcinoma[J]. Onco Targets Ther, 2018, 11:4501-4510.
[23] Du Y, Liu G, Zhao L, et al. Protective effect of miR-204 on doxorubicin-induced cardiomyocyte injury via HMGB1[J]. Oxid Med Cell Longev, 2020, 2020:8819771.
[24] Hu X, Zhang K, Chen Z, et al. The HMGB1-IL-17A axis contributes to hypoxia/reoxygenation injury via regulation of cardiomyocyte apoptosis and autophagy[J]. Mol Med Rep, 2018, 17(1):336-341.