索引超出了数组界限。
[1] Cao XK, Broughton ST, Waits GS, et al. Interrelations
between hypertension and electrocardiographic left ventricular
hypertrophy and their associations with cardiovascular
mortality[J]. Am J Cardiol, 2019, 123(2):274-283.
[2] Vasan RS, Song RJ, Xanthakis V, et al. Hypertension-mediated
organ damage: prevalence, correlates, and prognosis in the
community[J]. Hypertension, 2022, 79(3):505-515.
[3] Cai A, Liu L, Zhou D, et al. Influences of achieved SBP on age
and sex-related left ventricular structural alteration in community
hypertensive populations[J]. J Hypertens, 2022, 40(6):1170-1178.
[4] Hou Y, Ryan KA, Cronin CA, et al. Black-white differences
in left ventricular hypertrophy rates among young adults
with ischemic stroke[J]. J Stroke Cerebrovasc Dis, 2022,
31(8):106628.
[5] Soyaltin E, Demir BK, Erfidan G, et al. Effects of ambulatory
blood pressure monitoring parameters on left ventricular mass
index in hypertensive children[J]. Blood Press Monit, 2022,
27(4):213-219.
[6] Salagre SB, Khobragade AP. Clinical utility of ambulatory blood
pressure monitoring (ABPM) in newly diagnosed hypertensive
patients[J]. J Assoc Physicians India, 2020, 68(7):52-56.
[7] Cuspidi C, Rescaldani M, Tadic M, et al. White-coat
hypertension, as defined by ambulatory blood pressure
monitoring, and subclinical cardiac organ damage: a metaanalysis[
J]. J Hypertens, 2015, 33(1):24-32.
[8] Hinderliter AL, Lin FC, Viera LA, et al. Hypertension-mediated
organ damage in masked hypertension[J]. J Hypertens, 2022,
40(4):811-818.
[9] Tadic M, Cuspidi C, Saeed S, et al. The influence of left
ventricular geometry on myocardial work in essential
hypertension[J]. J Hum Hypertens, 2022, 36(6):524-530.
[10] Li T, Yang J, Guo X, et al. Geometrical and functional changes
of left heart in adults with prehypertension and hypertension: a
cross-sectional study from China[J]. BMC Cardiovasc Disord,
2016, 16:114.
[11] Cuspidi C, Sala C, Tadic M, et al. High-normal blood pressure
and abnormal left ventricular geometric patterns: a metaanalysis[
J]. J Hypertens, 2019, 37(7):1312-1319.
[12] Oldfield CJ, Duhamel TA, Dhalla NS. Mechanisms for
the transition from physiological to pathological cardiac
hypertrophy[J]. Can J Physiol Pharmacol, 2020, 98(2):74-84.
[13] Shao R, Li J, Qu T, et al. Mitophagy: a potential target for
pressure overload-induced cardiac remodelling[J]. Oxid Med
Cell Longev, 2022, 2022:2849985.
[14] G?m?ri K, Herwig M, Budde H, et al. Ca2+/calmodulin-dependent
protein kinase Ⅱ and protein kinase G oxidation contributes to
impaired sarcomeric proteins in hypertrophy model[J]. ESC heart
fail, 2022, 9(4):2585-2600.
[15] Duangrat R, Parichatikanond W, Morales NP, et al. Sustained
AT1R stimulation induces upregulation of growth factors in
human cardiac fibroblasts via Gαq/TGF-β/ERK signaling that
influences myocyte hypertrophy[J]. Eur J Pharmacol, 2022,
937:175384.
[16] Touyz RM, Rios FJ, Alves-Lopes R, et al. Oxidative stress:
a unifying paradigm in hypertension[J]. Can J Cardiol, 2020,
36(5):659-670.
[17] Davis H, Liu K, Li N, et al. Healthy cardiac myocytes can
decrease sympathetic hyperexcitability in the early stages of
hypertension[J]. Front Synaptic Neurosci, 2022, 14:949150.
[18] Nandi SS, Katsurada K, Mahata SK, et al. Neurogenic
hypertension mediated mitochondrial abnormality leads to
cardiomyopathy: contribution of UPRmt and NorepinephrinemiR-
18a-5p-HIF-1α axis[J]. Front Physiol, 2021, 12:718982.
[19] Romero-Becerra R, Mora A, Manieri E, et al. MKK6 deficiency
promotes cardiac dysfunction through MKK3-p38γ/δ-mTOR
hyperactivation[J]. Elife, 2022, 11:e75250.
[20] Han J, Dai S, Zhong L, et al. GSDMD (gasdermin D) mediates
pathological cardiac hypertrophy and generates a feed-forward
amplification cascade via mitochondria-STING (stimulator of
interferon genes) axis[J]. Hypertension, 2022, 79(11):2505-2518.
[21] Wundersitz S, Pablo Tortola C, Schmidt S, et al. The transcription
factor EB (TFEB) sensitizes the heart to chronic pressure
overload[J]. Int J Mol Sci, 2022, 23(11):5943.
[22] Zhang Z, Wang C. Exploring key genes and pathways of cardiac
hypertrophy based on bioinformatics[J]. Dis Markers, 2022,
2022:2081590.
[23] Wang H, Lian X, Gao W, et al. Long noncoding RNA H19
suppresses cardiac hypertrophy through the MicroRNA-145-3p/
SMAD4 axis[J]. Bioengineered, 2022,13(2): 3826-3839.
[24] Hieda M, Sarma S, Hearon CMJ, et al. Increased myocardial
stiffness in patients with high-risk left ventricular hypertrophy:
the hallmark of stage-B heart failure with preserved ejection
fraction[J]. Circulation, 2020, 141(2):115-123.
[25] Hasegawa TKA, Asakura M, Asanuma H, et al. Difference
in the prevalence of subclinical left ventricular impairment
among left ventricular geometric pattern in a community-based
population[J]. J Cardiol, 2020, 75(4):439-446.
[26] Shah AM, Cikes M, Prasad N, et al. Echocardiographic features
of patients with heart failure and preserved left ventricular
ejection fraction[J]. J Am Coll Cardiol, 2019, 74(23):2858-2873.
[27] Lindley KJ, Williams D, Conner SN, et al. The spectrum
of pregnancy-associated heart failure phenotypes: an
echocardiographic study[J]. Int J Cardiovasc Imaging, 2020,
36(9):1637-1645.
[28] Camici PG, Tsch?pe C, Di Carli MF, et al. Coronary
microvascular dysfunction in hypertrophy and heart failure[J].
Cardiovasc Res, 2020, 116(4):806-816.
[29] BA SS, Baru A. Factors associated with the extent of coronary
artery disease and the attained outcome of percutaneous coronary
intervention at gesund cardiac and medical center, Addis Ababa,
Ethiopia[J]. Ethiop J Health Sci, 2022, 32(3):539-548.
[30] Li T, Li GX, Guo XF, et al. Echocardiographic left ventricular
geometry profiles for prediction of stroke, coronary heart disease
and all-cause mortality in the Chinese community: a rural cohort
population study[J]. BMC Cardiovasc Disord, 2021, 21(1):238.
[31] Ha ET, Cohen M, Peterson SJ, et al. Eccentric hypertrophy
predicts adverse events in patients undergoing percutaneous
coronary intervention for acute coronary syndrome[J]. Arch Med
Sci Atheroscler Dis, 2021,6:e21-e27.
[32] Al Alwany AA. Arrhythmia related to hypertensive left
ventricular hypertrophy in Iraqi patients: frequency and
outcome[J]. J Med Life, 2022, 15(9):1115-1118.
[33] Erküner ?, Dudink EAMP, Nieuwlaat R, et al. Effect of systemic
hypertension with versus without left ventricular hypertrophy on
the progression of atrial fibrillation (from the Euro heart survey)
[J]. Am J Cardiol, 2018, 122(4):578-583.
[34] Chen YY, Chung FP, Lin YJ, et al. Exploring the risk factors of
sudden cardiac death using an electrocardiography and medical
ultrasonography for the general population without a history of
coronary artery disease or left ventricular ejection fraction <35%
and aged >35 years—a novel point-based prediction model
based on the Chin-Shan community cardiovascular cohort[J].
Circ J, 2022, 87(1):139-149.
[35] Verdecchia P, Angeli F, Cavallini C, et al. Sudden cardiac death
in hypertensive patients[J]. Hypertension, 2019, 73(5):1071-
1078.