索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]刘莉,吕风华,李柄志,等.高血压左室肥厚的研究进展[J].国际心血管病杂志,2024,01:45-48.
点击复制

高血压左室肥厚的研究进展(PDF)

《国际心血管病杂志》[ISSN:1006-6977/CN:61-1281/TN]

期数:
2024年01期
页码:
45-48
栏目:
综述
出版日期:
2024-01-22

文章信息/Info

Title:
-
作者:
刘莉吕风华李柄志范泽宇丁合心
453199 卫辉, 新乡医学院第一附属医院心血管内科
Author(s):
-
关键词:
左室肥厚高血压心血管疾病
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-6583.2024.01.013
文献标识码:
-
摘要:
左室肥厚(LVH)是高血压最常见的亚临床靶器官损害之一,是高血压患者心 血管不良预后的重要标志,及早发现并逆转LVH 有重要的临床意义。该文介绍高血压LVH 的流行病学、机制,以及与心血管疾病关系的相关研究。
Abstract:
-

参考文献/References

[1] Cao XK, Broughton ST, Waits GS, et al. Interrelations between hypertension and electrocardiographic left ventricular hypertrophy and their associations with cardiovascular mortality[J]. Am J Cardiol, 2019, 123(2):274-283.
[2] Vasan RS, Song RJ, Xanthakis V, et al. Hypertension-mediated organ damage: prevalence, correlates, and prognosis in the community[J]. Hypertension, 2022, 79(3):505-515.
[3] Cai A, Liu L, Zhou D, et al. Influences of achieved SBP on age and sex-related left ventricular structural alteration in community hypertensive populations[J]. J Hypertens, 2022, 40(6):1170-1178.
[4] Hou Y, Ryan KA, Cronin CA, et al. Black-white differences in left ventricular hypertrophy rates among young adults with ischemic stroke[J]. J Stroke Cerebrovasc Dis, 2022, 31(8):106628.
[5] Soyaltin E, Demir BK, Erfidan G, et al. Effects of ambulatory blood pressure monitoring parameters on left ventricular mass index in hypertensive children[J]. Blood Press Monit, 2022, 27(4):213-219.
[6] Salagre SB, Khobragade AP. Clinical utility of ambulatory blood pressure monitoring (ABPM) in newly diagnosed hypertensive patients[J]. J Assoc Physicians India, 2020, 68(7):52-56.
[7] Cuspidi C, Rescaldani M, Tadic M, et al. White-coat hypertension, as defined by ambulatory blood pressure monitoring, and subclinical cardiac organ damage: a metaanalysis[ J]. J Hypertens, 2015, 33(1):24-32.
[8] Hinderliter AL, Lin FC, Viera LA, et al. Hypertension-mediated organ damage in masked hypertension[J]. J Hypertens, 2022, 40(4):811-818.
[9] Tadic M, Cuspidi C, Saeed S, et al. The influence of left ventricular geometry on myocardial work in essential hypertension[J]. J Hum Hypertens, 2022, 36(6):524-530.
[10] Li T, Yang J, Guo X, et al. Geometrical and functional changes of left heart in adults with prehypertension and hypertension: a cross-sectional study from China[J]. BMC Cardiovasc Disord, 2016, 16:114.
[11] Cuspidi C, Sala C, Tadic M, et al. High-normal blood pressure and abnormal left ventricular geometric patterns: a metaanalysis[ J]. J Hypertens, 2019, 37(7):1312-1319.
[12] Oldfield CJ, Duhamel TA, Dhalla NS. Mechanisms for the transition from physiological to pathological cardiac hypertrophy[J]. Can J Physiol Pharmacol, 2020, 98(2):74-84.
[13] Shao R, Li J, Qu T, et al. Mitophagy: a potential target for pressure overload-induced cardiac remodelling[J]. Oxid Med Cell Longev, 2022, 2022:2849985.
[14] G?m?ri K, Herwig M, Budde H, et al. Ca2+/calmodulin-dependent protein kinase Ⅱ and protein kinase G oxidation contributes to impaired sarcomeric proteins in hypertrophy model[J]. ESC heart fail, 2022, 9(4):2585-2600.
[15] Duangrat R, Parichatikanond W, Morales NP, et al. Sustained AT1R stimulation induces upregulation of growth factors in human cardiac fibroblasts via Gαq/TGF-β/ERK signaling that influences myocyte hypertrophy[J]. Eur J Pharmacol, 2022, 937:175384.
[16] Touyz RM, Rios FJ, Alves-Lopes R, et al. Oxidative stress: a unifying paradigm in hypertension[J]. Can J Cardiol, 2020, 36(5):659-670.
[17] Davis H, Liu K, Li N, et al. Healthy cardiac myocytes can decrease sympathetic hyperexcitability in the early stages of hypertension[J]. Front Synaptic Neurosci, 2022, 14:949150.
[18] Nandi SS, Katsurada K, Mahata SK, et al. Neurogenic hypertension mediated mitochondrial abnormality leads to cardiomyopathy: contribution of UPRmt and NorepinephrinemiR- 18a-5p-HIF-1α axis[J]. Front Physiol, 2021, 12:718982.
[19] Romero-Becerra R, Mora A, Manieri E, et al. MKK6 deficiency promotes cardiac dysfunction through MKK3-p38γ/δ-mTOR hyperactivation[J]. Elife, 2022, 11:e75250.
[20] Han J, Dai S, Zhong L, et al. GSDMD (gasdermin D) mediates pathological cardiac hypertrophy and generates a feed-forward amplification cascade via mitochondria-STING (stimulator of interferon genes) axis[J]. Hypertension, 2022, 79(11):2505-2518.
[21] Wundersitz S, Pablo Tortola C, Schmidt S, et al. The transcription factor EB (TFEB) sensitizes the heart to chronic pressure overload[J]. Int J Mol Sci, 2022, 23(11):5943.
[22] Zhang Z, Wang C. Exploring key genes and pathways of cardiac hypertrophy based on bioinformatics[J]. Dis Markers, 2022, 2022:2081590.
[23] Wang H, Lian X, Gao W, et al. Long noncoding RNA H19 suppresses cardiac hypertrophy through the MicroRNA-145-3p/ SMAD4 axis[J]. Bioengineered, 2022,13(2): 3826-3839.
[24] Hieda M, Sarma S, Hearon CMJ, et al. Increased myocardial stiffness in patients with high-risk left ventricular hypertrophy: the hallmark of stage-B heart failure with preserved ejection fraction[J]. Circulation, 2020, 141(2):115-123.
[25] Hasegawa TKA, Asakura M, Asanuma H, et al. Difference in the prevalence of subclinical left ventricular impairment among left ventricular geometric pattern in a community-based population[J]. J Cardiol, 2020, 75(4):439-446.
[26] Shah AM, Cikes M, Prasad N, et al. Echocardiographic features of patients with heart failure and preserved left ventricular ejection fraction[J]. J Am Coll Cardiol, 2019, 74(23):2858-2873.
[27] Lindley KJ, Williams D, Conner SN, et al. The spectrum of pregnancy-associated heart failure phenotypes: an echocardiographic study[J]. Int J Cardiovasc Imaging, 2020, 36(9):1637-1645.
[28] Camici PG, Tsch?pe C, Di Carli MF, et al. Coronary microvascular dysfunction in hypertrophy and heart failure[J]. Cardiovasc Res, 2020, 116(4):806-816.
[29] BA SS, Baru A. Factors associated with the extent of coronary artery disease and the attained outcome of percutaneous coronary intervention at gesund cardiac and medical center, Addis Ababa, Ethiopia[J]. Ethiop J Health Sci, 2022, 32(3):539-548.
[30] Li T, Li GX, Guo XF, et al. Echocardiographic left ventricular geometry profiles for prediction of stroke, coronary heart disease and all-cause mortality in the Chinese community: a rural cohort population study[J]. BMC Cardiovasc Disord, 2021, 21(1):238.
[31] Ha ET, Cohen M, Peterson SJ, et al. Eccentric hypertrophy predicts adverse events in patients undergoing percutaneous coronary intervention for acute coronary syndrome[J]. Arch Med Sci Atheroscler Dis, 2021,6:e21-e27.
[32] Al Alwany AA. Arrhythmia related to hypertensive left ventricular hypertrophy in Iraqi patients: frequency and outcome[J]. J Med Life, 2022, 15(9):1115-1118.
[33] Erküner ?, Dudink EAMP, Nieuwlaat R, et al. Effect of systemic hypertension with versus without left ventricular hypertrophy on the progression of atrial fibrillation (from the Euro heart survey) [J]. Am J Cardiol, 2018, 122(4):578-583.
[34] Chen YY, Chung FP, Lin YJ, et al. Exploring the risk factors of sudden cardiac death using an electrocardiography and medical ultrasonography for the general population without a history of coronary artery disease or left ventricular ejection fraction <35% and aged >35 years—a novel point-based prediction model based on the Chin-Shan community cardiovascular cohort[J]. Circ J, 2022, 87(1):139-149.
[35] Verdecchia P, Angeli F, Cavallini C, et al. Sudden cardiac death in hypertensive patients[J]. Hypertension, 2019, 73(5):1071- 1078.

备注/Memo

备注/Memo:
通信作者:吕风华, E-mail:doctorlvfh@163.com
更新日期/Last Update: 2024-01-22