索引超出了数组界限。
[1] Meier P, Hemingway H, Lansky AJ, et al. The impact of the
coronary collateral circulation on mortality: a meta-analysis[J].
Eur Heart J, 2012, 33(5):614-621.
[2] Galassi AR, Werner GS, Boukhris M, et al. Percutaneous
recanalisation of chronic total occlusions: 2019 consensus
document from the EuroCTO Club[J]. EuroIntervention, 2019,
15(2):198-208.
[3] Saeedi PY, Salpea P, Karuranga S, et al. Mortality attributable
to diabetes in 20–79 years old adults, 2019 estimates: results
from the International Diabetes Federation Diabetes Atlas, 9th
edition[J]. Diabetes Res Clin Pract, 2020, 162:108086.
[4] Azzalini L, Jolicoeur EM, Pighi M, et al. Epidemiology,
management strategies, and outcomes of patients with chronic
total coronary occlusion[J]. Am J Cardiol, 2016, 118(8):1128-
1135.
[5] Tsai TT, Stanislawski MA, Shunk KA, et al. Contemporary
incidence, management, and long-term outcomes of percutaneous
coronary interventions for chronic coronary artery total
occlusions: insights from the VA CART program[J]. JACC
Cardiovasc Interv, 2017, 10(9):866-875.
[6] Roth C, Goliasch G, Aschauer S, et al. Impact of treatment
strategies on long-term outcome of CTO patients[J].Eur J Intern
Med, 2020, 77: 97-104.
[7] Swat SA, Hebbe A, Plomondon ME, et al. Contemporary
management before chronic total occlusion percutaneous
coronary interventions: insights from the veterans affairs clinical
assessment, reporting, and tracking program[J]. Circ Cardiovasc
Qual Outcomes, 2023, 16(3):e008949.
[8] Megaly M. Comparative analysis of patient characteristics in
chronic total occlusion revascularization studies: trials vs realworld
registries[J]. JACC Cardiovasc Interv, 2022, 15(14):1441-
1449.
[9] Rha SW, Choi BG, Choi SY, et al. Multicenter experience with
percutaneous coronary intervention for chronic total occlusion
in Korean population: analysis of the Korean nationwide
multicenter chronic total occlusion registry[J]. Coron Artery Dis,
2020, 31(4):319-326.
[10] Zhao S, Chen Y, Wang QY, et al. Benefits of successful
percutaneous coronary intervention in chronic total occlusion
patients with diabetes[J]. Cardiovasc Diabetol, 2022, 21(1):271.
[11] Quadros A, Belli KC, de Paula JET, et al. Chronic total occlusion
percutaneous coronary intervention in Latin America[J]. Catheter
Cardiovasc Interv, 2020, 96(5):1046-1055.
[12] Howangyin KY, Silvestre JS. Diabetes mellitus and
ischemic diseases: molecular mechanisms of vascular repair
dysfunction[J]. Arterioscler Thromb Vasc Biol, 2014, 34(6):1126-
1135.
[13] L a s s a l e t t a AD, Chu LM, Sellke FW. Therapeutic
neovascularization for coronary disease: current state and future
prospects[J]. Basic Res Cardiol, 2011, 106(6):897-909.
[14] Paquin-Veillette J, Lizotte F, Robillard S, et al. Deletion of AT2
receptor prevents SHP-1-induced VEGF inhibition and improves
blood flow reperfusion in diabetic ischemic hindlimb[J].
Arterioscler Thromb Vasc Biol, 2017, 37(12):2291-2300.
[15] Mouquet F, Cuilleret F, Susen S, et al. Metabolic syndrome and
collateral vessel formation in patients with documented occluded
coronary arteries: association with hyperglycaemia, insulinresistance,
adiponectin and plasminogen activator inhibitor-1[J].
Eur Heart J, 2009, 30(7):840-849.
[16] Chou E, Suzuma I, Way KJ, et al. Decreased cardiac expression
of vascular endothelial growth factor and its receptors in insulinresistant
and diabetic states: a possible explanation for impaired
collateral formation in cardiac tissue[J]. Circulation, 2002,
105(3):373-379.
[17] Molina MN, Ferder L, Manucha W. Emerging role of nitric oxide
and heat shock proteins in insulin resistance[J]. Curr Hypertens
Rep, 2016, 18(1):1.
[18] Li YK, He SY, Wu Z, et al. The predictive value of the
triglyceride-glucose index for cardiovascular events in patients
with coronary chronic total occlusion[J]. Cardiovasc Diabetol,
2022, 21(1):149.
[19] Lin LX, Li QY, Zhao DH, et al. A high triglyceride-glucose
index associated with adverse cardiovascular events in patients
with type 2 diabetes mellitus and chronic total occlusion after
percutaneous coronary intervention[J]. J Investig Med, 2023,
71(5):471-481.
[20] Bao LX, Dai Y, Lu L, et al. Vasostatin-2 associates with coronary
collateral vessel formation in diabetic patients and promotes
angiogenesis via angiotensin-converting enzyme 2[J]. Eur Heart
J, 2023, 44(19):1732-1744.
[21] Regieli JJ, Jukema JW, Nathoe HM, et al. Coronary collaterals
improve prognosis in patients with ischemic heart disease[J]. Int
J Cardiol, 2009, 132(2):257-262.
[22] Werner GS, Martin-Yuste V, Hildick-Smith D, et al. A
randomized multicentre trial to compare revascularization
with optimal medical therapy for the treatment of chronic total
coronary occlusions[J]. Eur Heart J, 2018, 39(26):2484-2493.
[23] Yang ZK, Shen Y, Dai Y, et al. Impact of coronary
collateralization on long-term clinical outcomes in type 2
diabetic patients after successful recanalization of chronic total
occlusion[J]. Cardiovasc Diabetol, 2020, 19(1):59.
[24] Shen Y, Chen S, Dai Y, et al. Lipoprotein(a) interactions
with cholesterol-containing lipids on angiographic coronary
collateralization in type 2 diabetic patients with chronic total
occlusion[J]. Cardiovasc Diabetol, 2019, 18(1):82.
[25] 马琛, 陈少敏, 崔鸣. 冠状动脉慢性完全闭塞病变治疗研究进
展[J]. 心血管病学进展, 2020, 41(4):333-337.
[26] 王凯阳, 谢翔. 冠状动脉慢性完全闭塞病变诊疗现状及研究进
展[J]. 兵团医学, 2021, 19(4):47-52.
[27] Guo L, Wang JJ, Ding HY, et al. Long-term outcomes of medical
therapy versus successful recanalisation for coronary chronic
total occlusions in patients with and without type 2 diabetes
mellitus[J]. Cardiovasc Diabetol, 2020, 19(1):100.
[28] Yan Y, Yuan F, Liu X, et al. Percutaneous coronary intervention
offers clinical benefits to diabetic patients with stable chronic
total occlusion[J].Angiology, 2023:33197231153246.
[29] Yan YF, Yuan F, Liu H, et al. Percutaneous coronary intervention
offers survival benefit to stable patients with one single chronic
total occlusion and diabetes: a propensity score-matched
analysis[J]. Angiology, 2020, 71(2):150-159.
[30] 闫云峰, 聂毛晓, 陈青, 等. 合并糖尿病的冠状动脉慢性闭
塞病变治疗策略探讨[J]. 中国循证心血管医学杂志, 2020,
12(12):1500-1504.
[31] Lee SW, Lee PH, Ahn JM, et al. Randomized trial evaluating
percutaneous coronary intervention for the treatment of chronic
total occlusion[J]. Circulation, 2019, 139(14):1674-1683.
[32] Sapontis J, Salisbury AC, Yeh RW, et al. Early procedural and
health status outcomes after chronic total occlusion angioplasty:
a report from the OPEN-CTO registry (outcomes, patient
health status, and efficiency in chronic total occlusion hybrid
procedures)[J]. JACC Cardiovasc Interv, 2017, 10(15):1523-
1534.
[33] Rinfret S, Sandesara PB. Reducing ischemia with CTO PCI:
good news, but questions remain[J]. JACC Cardiovasc Interv,
2021, 14(13):1419-1422.
[34] Flores-Umanzor EJ, Cepas-Guillen PL, Vázquez S, et al. Survival
benefit of revascularization versus optimal medical therapy
alone for chronic total occlusion management in patients with
diabetes[J]. Catheter Cardiovasc Interv, 2021, 97(3):376-383.
[35] Yan YF, Zhang MD, Yuan F, et al. Successful revascularization
versus medical therapy in diabetic patients with stable right
coronary artery chronic total occlusion: a retrospective cohort
study[J]. Cardiovasc Diabetol, 2019, 18(1):108.
[36] Fu DL, Li HW, Gao T, et al. Comparison of long-term clinical
outcomes of percutaneous coronary intervention for chronic total
occlusion between patients with and without diabetes mellitus:
a single-center retrospective observational study[J]. Ann Palliat
Med, 2021, 10(9):9993-10004.
[37] Simsek B, Kostantinis S, Karacsonyi J, et al. Predicting
periprocedural complications in chronic total occlusion
percutaneous coronary intervention: the PROGRESS-CTO
complication scores[J]. JACC Cardiovasc Interv, 2022,
15(14):1413-1422.
[38] Martinez-Parachini JR, Karatasakis A, Karmpaliotis D, et al.
Impact of diabetes mellitus on acute outcomes of percutaneous
coronary intervention in chronic total occlusions: insights from a
US multicentre registry[J]. Diabet Med, 2017, 34(4):558-562.
[39] Salisbury AC, Sapontis J, Grantham JA, et al. Outcomes of
chronic total occlusion percutaneous coronary intervention in
patients with diabetes: insights from the OPEN CTO registry[J].
JACC Cardiovasc Interv, 2017, 10(21):2174-2181.
[40] Tsai CT, Huang WC, Teng HI, et al. Long term clinical impact
of successful recanalization of chronic total occlusion in patients
with and without type 2 diabetes mellitus[J]. Cardiovasc
Diabetol, 2020, 19(1):119.
[41] Zhu Y, Meng S, Chen ML, et al. Long-term prognosis of chronic
total occlusion treated by successful percutaneous coronary
intervention in patients with or without diabetes mellitus: a
systematic review and meta-analysis[J]. Cardiovasc Diabetol,
2021, 20(1):29.
[42] Guan JL, Li XH, Gong SN, et al. Impact of diabetes mellitus on
all and successful percutaneous coronary intervention outcomes
for chronic total occlusions: a systematic review and metaanalysis[
J].Heart Lung, 2022, 55:108-116.
[43] Zhang XH, Nie MX, Chen X, et al. Glycemic control status and
long-term clinical outcomes in diabetic chronic total occlusion
patients: an observational study[J]. J Interv Cardiol, 2021,
2021:33976589.
[44] Wang PZ, Yuan DS, Jia SD, et al. 5-Year clinical outcomes of
successful recanalisation for coronary chronic total occlusions
in patients with or without type 2 diabetes mellitus[J]. Front
Cardiovasc Med, 2021, 8:691641.