[1]Marian AJ, Braunwald E. Hypertrophic cardiomyopathy:genetics, pathogenesis, clinical manifestations, diagnosis, and therapy[J]. Circ Res, 2017, 121(7):749-770.
[2]McNally EM, Mestroni L. Dilated cardiomyopathy: genetic determinants and mechanisms[J]. Circ Res, 2017, 121(7):731-748.
[3]Walsh R, Rutland C, Thomas R, et al. Cardiomyopathy: a systematic review of disease-causing mutations in myosin heavy chain 7 and their phenotypic manifestations[J]. Cardiology, 2010, 115(1):49-60.
[4]Smith KM, Squiers J. Hypertrophic cardiomyopathy: an overview[J]. Crit Care Nurs Clin North Am, 2013, 25(2):263-272.
[5]Park HY. Hereditary dilated cardiomyopathy: recent advances in genetic diagnostics[J]. Korean Circ J, 2017, 47(3):291-298.
[6]Tanjore R, Rangaraju A, Vadapalli S, et al. Genetic variations of β-MYH7 in hypertrophic cardiomyopathy and dilated cardiomyopathy[J]. Indian J Hum Genet, 2010, 16(2):67-71.
[7]Grenier MA, Osganian SK, Cox GF, et al. Design and implementation of the North American Pediatric Cardiomyopathy Registry[J]. Am Heart J, 2000, 139(2):s86-s95.
[8]Fatkin D, Christe ME, Aristizabal O, et al. Neonatal cardiomyopathy in mice homozygous for the Arg403Gln mutation in the alpha cardiac myosin heavy chain gene[J]. J Clin Invest, 1999, 103(1):147-153.
[9]McConnell BK, Fatkin D, Semsarian C, et al. Comparison of two murine models of familial hypertrophic cardiomyopathy[J]. Circ Res, 2001, 88(4):383-389.
[10] Kayvanpour E, Sedaghat-Hamedani F, Amr A, et al. Genotype-phenotype associations in dilated cardiomyopathy: meta-analysis on more than 8000 individuals[J]. Clin Res Cardiol, 2017, 106(2):127-139.
[11] Hershkovitz T, Kurolap A, Ruhrman-Shahar N, et al. Clinical diversity of MYH7-related cardiomyopathies: insights into genotype-phenotype correlations[J]. Am J Med Genet A, 2019, 179(3):365-372.
[12] Girolami F, Passantino S, Verrillo F, et al. The influence of genotype on the phenotype, clinical course, and risk of adverse events in children with hypertrophic cardiomyopathy[J]. Heart Fail Clin, 2022, 18(1):1-8.
[13] Dadson K, Hauck L, Billia F. Molecular mechanisms in cardiomyopathy[J]. Clin Sci (Lond), 2017, 131(13):1375-1392.
[14] Wijnker PJM, van der Velden J. Mutation-specific pathology and treatment of hypertrophic cardiomyopathy in patients, mouse models and human engineered heart tissue[J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(8):165774.
[15] Ren XF, Hensley N, Brady MB, et al. The genetic and molecular bases for hypertrophic cardiomyopathy: the role for calcium sensitization[J]. J Cardiothorac Vasc Anesth, 2018, 32(1):478-487.
[16] Montag J, Kowalski K, Makul M, et al. Burst-like transcription of mutant and wildtype MYH7-alleles as possible origin of cell-to-cell contractile imbalance in hypertrophic cardiomyopathy[J]. Front Physiol, 2018, 9:359.
[17] Alves ML, Gaffin RD, Wolska BM. Rescue of familial cardiomyopathies by modifications at the level of sarcomere and Ca2+ fluxes[J]. J Mol Cell Cardiol, 2010, 48(5):834-842.
[18] Pagiatakis C, Di Mauro V. The emerging role of epigenetics in therapeutic targeting of cardiomyopathies[J]. Int J Mol Sci, 2021, 22(16):8721.
[19] Jordan DM, Kiezun A, Baxter SM, et al. Development and validation of a computational method for assessment of missense variants in hypertrophic cardiomyopathy[J]. Am J Hum Genet, 2011, 88(2):183-192.
[20] Lu CX, Wu W, Liu F, et al. Molecular analysis of inherited cardiomyopathy using next generation semiconductor sequencing technologies[J]. J Transl Med, 2018, 16(1):241.