索引超出了数组界限。
[1]Felker GM, Ellison DH, Mullens W, et al. Diuretic therapy for patients with heart failure: JACC state-of-the-art review[J]. J Am Coll Cardiol, 2020, 75(10):1178-1195.
[2]Harjola VP, Mullens W, Banaszewski M, et al. Organ dysfunction, injury and failure in acute heart failure: from pathophysiology to diagnosis and management. A review on behalf of the Acute Heart Failure Committee of the Heart Failure Association (HFA) of the European Society of Cardiology (ESC)[J]. Eur J Heart Fail, 2017, 19(7):821-836.
[3]Testani JM, Hanberg JS, Cheng SS, et al. Rapid and highly accurate prediction of poor loop diuretic natriuretic response in patients with heart failure[J]. Circ Heart Fail, 2016, 9(1):e002370.
[4]la Espriella RD, Bayés-Genís A, Nú?ez E, et al. Urine: an overlooked biomedium in heart failure?[J]. Biomark Med, 2020, 14(3):165-168.
[5]Galluzzo A, Bertaina M, Frea S. Urinary sodium evaluation:the missing target for diuretic treatment optimization in acute heart failure patients? Letter regarding the article clinical importance of urinary sodium excretion in acute heart failure [J]. Eur J Heart Fail, 2020, 22(10):1933.
[6]Damman K, ter Maaten JM, Meer P. Urinary sodium evaluation: the missing target for diuretic treatment optimization in acute heart failure patients? Reply[J]. Eur J Heart Fail, 2020, 22(10):1933-1934.
[7]Damman K, ter Maaten JM, Coster JE, et al. Clinical importance of urinary Sodium excretion in acute heart failure[J]. Eur J Heart Fail, 2020, 22(8):1438-1447.
[8]Hodson DZ, Griffin M, Mahoney D, et al. Natriuretic response is highly variable and associated with 6-month survival:insights from the ROSE-AHF trial[J]. JACC Heart Fail, 2019, 7(5):383-391.
[9]Verbrugge FH, Nijst P, Dupont M, et al. Urinary composition during decongestive treatment in heart failure with reduced ejection fraction[J]. Circ Heart Fail, 2014, 7(5):766-772.
[10] Palmer BF, Clegg DJ. The use of selected urine chemistries in the diagnosis of kidney disorders[J]. Clin J Am Soc Nephrol, 2019, 14(2):306-316.
[11] Verbrugge FH. Utility of urine biomarkers and electrolytes for the management of heart failure[J]. Curr Heart Fail Rep, 2019(6):240-249.
[12] Biegus J, Zymliński R, Sokolski M, et al. Serial assessment of spot urine sodium predicts effectiveness of decongestion and outcome in patients with acute heart failure[J]. Eur J Heart Fail, 2019, 21(5):624-633.
[13] Singh D, Shrestha K, Testani JM, et al. Insufficient natriuretic response to continuous intravenous furosemide is associated with poor long-term outcomes in acute decompensated heart failure[J]. J Card Fail, 2014, 20(6):392-399.
[14] Galluzzo A, Frea S, Boretto P, et al. Spot urinary sodium in acute decompensation of advanced heart failure and dilutional hyponatremia: insights from DRAIN trial[J]. Clin Res Cardiol, 2020, 109(10):1251-1259.
[15] Ter Maaten JM, Rao VS, Hanberg JS, et al. Renal tubular resistance is the primary driver for loop diuretic resistance in acute heart failure[J]. Eur J Heart Fail, 2017, 19(8):1014-1022.
[16] Honda S, Nagai T, Nishimura K, et al. Long-term prognostic significance of urinary sodium concentration in patients with acute heart failure[J]. Int J Cardiol, 2018, 254:189-194.[17] Ferreira JP, Girerd N, Medeiros PB, et al. Spot urine sodium excretion as prognostic marker in acutely decompensated heart failure: the spironolactone effect[J]. Clin Res Cardiol, 2016, 105(6):489-507.
[18] Cox ZL, Rao VS, Ivey-Miranda JB, et al. Compensatory post-diuretic renal sodium reabsorption is not a dominant mechanism of diuretic resistance in acute heart failure[J]. Eur Heart J, 2021, 42(43):4468-4477.
[19] Mullens W, Damman K, Harjola VP, et al. The use of diuretics in heart failure with congestion—a position statement from the Heart Failure Association of the European Society of Cardiology[J]. Eur J Heart Fail, 2019, 21(2):137-155.
[20] Rao VS, Ivey-Miranda JB, Cox ZL, et al. Natriuretic equation to predict loop diuretic response in patients with heart failure[J]. J Am Coll Cardiol, 2021, 77(6):695-708.
[21] Ter Maaten JM, Beldhuis IE, van der Meer P, et al. Natriuresis-guided therapy in acute heart failure: rationale and design of the Pragmatic Urinary Sodium-based treatment algoritHm in Acute Heart Failure (PUSH-AHF) trial[J]. Eur J Heart Fail, 2022, 24(2):385-392.
[22] Dauw J, Lelonek M, Zegri-Reiriz I, et al. Rationale and design of the efficacy of a standardized diuretic protocol in acute heart failure study[J]. ESC Heart Fail, 2021, 8(6):4685-4692.
[23] Khorramshahi Bayat M, Ngo L, Mulligan A, et al. The association between urinary sodium concentration (UNa) and outcomes of acute heart failure: a systematic review and meta-analysis[J]. Eur Heart J Qual Care Clin Outcomes, 2022, 8(7):709-721.
[24] de la Espriella R, Nú?ez E, Llàcer P, et al. Early urinary sodium trajectory and risk of adverse outcomes in acute heart failure and renal dysfunction[J]. Rev Esp Cardiol (Engl Ed), 2021, 74(7):616-623.
[25] Cunningham JW, Sun JL, mc Causland FR, et al. Lower urine sodium predicts longer length of stay in acute heart failure patients: insights from the ROSE AHF trial[J]. Clin Cardiol, 2020, 43(1):43-49.
[26] Wongboonsin J, Thongprayoon C, Bathini T, et al. Acetazolamide therapy in patients with heart failure: a meta-analysis[J]. J Clin Med, 2019, 8(3):349.
[27] Verbrugge FH, Dupont M, Bertrand PB, et al. Determinants and impact of the natriuretic response to diuretic therapy in heart failure with reduced ejection fraction and volume overload[J]. Acta Cardiol, 2015, 70(3):265-273.
[28] Miller WL. Fluid volume overload and congestion in heart failure: time to reconsider pathophysiology and how volume is assessed[J]. Circ Heart Fail, 2016, 9(8):e002922.
[29] Boorsma EM, Ter Maaten JM, Damman K, et al. Congestion in heart failure: a contemporary look at physiology, diagnosis and treatment[J]. Nat Rev Cardiol, 2020, 17(10):641-655.
[30] Desai AS, Mc Causland FR. Urinary sodium as a heart failure biomarker: more complicated than it seems[J]. JACC Heart Fail, 2019, 7(5):415-417.