索引超出了数组界限。
[1]Jalkanen S, Salmi M. Lymphatic endothelial cells of the lymph node[J]. Nat Rev Immunol, 2020, 20(9):566-578.
[2]Rieg T, Vallon V. Development of SGLT1 and SGLT2 inhibitors[J]. Diabetologia, 2018, 61(10):2079-2086.
[3]Ji RC. The role of lymphangiogenesis in cardiovascular diseases and heart transplantation[J]. Heart Fail Rev, 2022, 27(5):1837-1856.
[4]Vieira JM, Norman S, Villa Del Campo C, et al. The cardiac lymphatic system stimulates resolution of inflammation following myocardial infarction[J]. J Clin Invest, 2018, 128(8):3402-3412.
[5]Henri O, Pouehe C, Houssari M, et al. Selective stimulation of cardiac lymphangiogenesis reduces myocardial edema and fibrosis leading to improved cardiac function following myocardial infarction[J]. Circulation, 2016, 133(15):1484-1497.
[6]Kataru RP, Wiser I, Baik JE, et al. Fibrosis and secondary lymphedema: chicken or egg?[J]. Transl Res, 2019, 209:68-76.
[7]Beaini S, Saliba Y, Hajal J, et al. VEGF-C attenuates renal damage in salt-sensitive hypertension[J]. J Cell Physiol, 2019, 234(6):9616-9630.
[8]Tanabe K, Wada J, Sato Y. Targeting angiogenesis and lymphangiogenesis in kidney disease[J]. Nat Rev Nephrol, 2020, 16(5):289-303.
[9]Milasan A, Smaani A, Martel C. Early rescue of lymphatic function limits atherosclerosis progression in Ldlr?/? mice[J]. Atherosclerosis, 2019, 283:106-119.
[10] Brakenhielm E, González A, Díez J. Role of cardiac lymphatics in myocardialedema and fibrosis: JACC review topic of the week[J]. J Am Coll Cardiol, 2020, 76(6):735-744.
[11] Shimizu Y, Polavarapu R, Eskla KL, et al. Impact of lymphangiogenesis on cardiac remodeling after ischemia and reperfusion injury[J]. J Am Heart Assoc, 2018, 7(19):e009565.
[12] Buse JB, Wexler DJ, Tsapas A, et al. 2019 update to:management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD)[J]. Diabetologia, 2020, 63(2):221-228.
[13] Santos-Gallego CG, Requena-Ibanez JA, San Antonio R, et al. Empagliflozin ameliorates diastolic dysfunction and left ventricular fibrosis/stiffness in nondiabetic heart failure: a multimodality study[J]. JACC Cardiovasc Imaging, 2021, 14(2):393-407.
[14] Lee HC, Shiou YL, Jhuo SJ, et al. The Sodium-glucose co-transporter 2 inhibitor empagliflozin attenuates cardiac fibrosis and improves ventricular hemodynamics in hypertensive heart failure rats[J]. Cardiovasc Diabetol, 2019, 18(1):45.
[15] Heise T, Jordan J, Wanner C, et al. Acute pharmacodynamic effects of empagliflozin with and without diuretic agents in patients with type 2 diabetes mellitus[J]. Clin Ther, 2016, 38(10):2248-2264.
[16] Li CG, Zhang J, Xue M, et al. SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart[J]. Cardiovasc Diabetol, 2019, 18(1):15.
[17] Matsutani D, Sakamoto M, Kayama YSE, et al. Effect of canagliflozin on left ventricular diastolic function in patients with type 2 diabetes[J]. Cardiovasc Diabetol, 2018, 17(1):73.
[18] Bode D, Semmler L, Wakula P, et al. Dual SGLT-1 and SGLT-2 inhibition improves left atrial dysfunction in HFpEF[J]. Cardiovasc Diabetol, 2021, 20(1):7.
[19] van der Aart-van der Beek AB, de Boer RA, Heerspink HJL. Kidney and heart failure outcomes associated with SGLT2
[20] Inzucchi SE, Kosiborod M, Fitchett D, et al. Improvement in cardiovascular outcomes with empagliflozin is independent of glycemic control[J]. Circulation, 2018, 138(17):1904-1907.
[21] McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction[J]. N Engl J Med, 2019, 381(21):1995-2008.
[22] Toyama T, Neuen BL, Jun M, et al. Effect of SGLT2 inhibitors on cardiovascular, renal and safety outcomes in patients with type 2 diabetes mellitus and chronic kidney disease: a systematic review and meta-analysis[J]. Diabetes Obes Metab, 2019, 21(5):1237-1250.
[23] Connelly KA, Zhang YL, Visram A, et al. Empagliflozin improves diastolic function in a nondiabetic rodent model of heart failure with preserved ejection fraction[J]. JACC Basic Transl Sci, 2019, 4(1):27-37.
[24] Verma S, Mazer CD, Yan AT, et al. Effect of empagliflozin on left ventricular mass in patients with type 2 diabetes mellitus and coronary artery disease: the EMPA-HEART CardioLink-6 randomized clinical trial[J]. Circulation, 2019, 140(21):1693-1702.
[25] Peng DD, Fu MY, Wang MN, et al. Targeting TGF-β signal transduction for fibrosis and cancer therapy[J]. Mol Cancer, 2022, 21(1):104.
[26] Vander Ark A, Cao JC, Li XH. TGF-β receptors: in and beyond TGF-β signaling[J] .Cell Signal, 2018, 52:112-120.
[27] Zhang Q, Wang L, Wang SQ, et al. Signaling pathways and targeted therapy for myocardial infarction[J]. Signal Transduction Targeted Ther, 2022, 7(1):78.
[28] Goumans MJ, Ten DP. TGF-β signaling in control of cardiovascular function[J]. Cold Spring Harb Perspect Biol, 2018, 10(2):a022210.
[29] Kinashi H, Ito Y, Sun T, et al. Roles of the TGF-β–VEGF-C pathway in fibrosis-related lymphangiogenesis[J]. Int J Mol Sci, 2018, 19(9):2487.
[30] Li G, Zhao CC, Fang SH. SGLT2 promotes cardiac fibrosis following myocardial infarction and is regulated by miR-141[J]. Exp Ther Med, 2021, 22(1):715.
[31] Tian JJ, Zhang MJ, Suo MY, et al. Dapagliflozin alleviates cardiac fibrosis through suppressing EndMT and fibroblast activation via AMPKα/TGF-β/Smad signalling in type 2 diabetic rats[J]. J Cell Mol Med, 2021, 25(16):7642-7659.