索引超出了数组界限。
[1]Jia G, Hill MA, Sowers JR. Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity[J]. Circ Res, 2018, 122(4):624-638.
[2]Rubler S, Dlugash J, Yuceoglu YZ, et al. New type of cardiomyopathy associated with diabetic glomerulosclerosis[J].Am J Cardiol, 1972, 30(6):595-602.
[3]Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes[J]. N Engl J Med, 2015, 373(22):2117-2128.
[4]Levelt E, Mahmod M, Piechnik SK, et al. Relationship between left ventricular structural and metabolic remodeling in type 2 diabetes[J]. Diabetes, 2016, 65(1):44-52.
[5]Liu J, Yang X, Zhang P, et al. Association of urinary Sodium excretion and left ventricular hypertrophy in people with type 2 diabetes mellitus: a cross-sectional study[J]. Front Endocrinol (Lausanne), 2021, 12:728493.
[6]H?lscher ME, Bode C, Bugger H. Diabetic cardiomyopathy:does the type of diabetes matter?[J]. Int J Mol Sci, 2016, 17(12):2136.
[7]Tuleta I, Frangogiannis NG. Fibrosis of the diabetic heart:clinical significance, molecular mechanisms, and therapeutic opportunities[J]. Adv Drug Deliv Rev, 2021, 176:113904.
[8]Russo I, Frangogiannis NG. Diabetes-associated cardiac fibrosis: cellular effectors, molecular mechanisms and therapeutic opportunities[J]. J Mol Cell Cardiol, 2016, 90:84-93.
[9]Wong TC, Piehler KM, Kang IA, et al. Myocardial extracellular volume fraction quantified by cardiovascular magnetic resonance is increased in diabetes and associated with mortality and incident heart failure admission[J]. Eur Heart J, 2014, 35(10):657-664.
[10] Khan MA, Yang EY, Nguyen DT, et al. Examining the relationship and prognostic implication of diabetic status and extracellular matrix expansion by cardiac magnetic resonance[J]. Circ Cardiovasc Imaging, 2020, 13(7):e011000.
[11] Li C, Zhang J, Xue M, et al. SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart[J]. Cardiovasc Diabetol, 2019, 18(1):15.
[12] Tian J, Zhang M, Suo M, et al. Dapagliflozin alleviates cardiac fibrosis through suppressing EndMT and fibroblast activation via AMPKα/TGF-β/Smad signalling in type 2 diabetic rats[J]. J Cell Mol Med, 2021, 25(16):7642-7659.
[13] Kang S, Verma S, Hassanabad AF, et al. Direct effects of empagliflozin on extracellular matrix remodelling in human cardiac myofibroblasts: novel translational clues to explain EMPA-REG OUTCOME results[J]. Can J Cardiol, 2020, 36(4):543-553.
[14] Hsu JC, Wang CY, Su MM, et al. Effect of empagliflozin on cardiac function, adiposity, and diffuse fibrosis in patients with type 2 diabetes mellitus[J]. Sci Rep, 2019, 9(1):15348.
[15] Oka S, Kai T, Hoshino K, et al. Effects of empagliflozin in different phases of diabetes mellitus-related cardiomyopathy:a prospective observational study[J]. BMC Cardiovasc Disord, 2021, 21(1):217.
[16] Movahed MR, Ramaraj R, Manrique C, et al. Left ventricular hypertrophy is independently associated with all-cause mortality[J]. Am J Cardiovasc Dis, 2022, 12(1):38-41.
[17] Hanna A, Frangogiannis NG. Inflammatory cytokines and chemokines as therapeutic targets in heart failure[J]. Cardiovasc Drugs Ther, 2020, 34(6):849-863.
[18] Ramachandra CJA, Cong S, Chan X, et al. Oxidative stress in cardiac hypertrophy: from molecular mechanisms to novel therapeutic targets[J]. Free Radic Biol Med, 2021, 166:297-312.
[19] Lewis AA, Ayers CR, Selvin E, et al. Racial differences in malignant left ventricular hypertrophy and incidence of heart failure: a multicohort study[J]. Circulation, 2020, 141(12):957-967.
[20] Kim SH, Sung KC, Lee SK, et al. Longitudinal changes in left ventricular structure and function in patients with type 2 diabetes: normal weight versus overweight/obesity[J]. Diab Vasc Dis Res, 2019, 16(5):450-457.
[21] Liu L, Luo H, Liang Y, et al. Dapagliflozin ameliorates STZ-induced cardiac hypertrophy in type 2 diabetic rats by inhibiting the calpain-1 expression and nuclear transfer of NF-κB[J]. Comput Math Methods Med, 2022, 2022:3293054.
[22] Park SH, Farooq MA, Gaertner S, et al. Empagliflozin improved systolic blood pressure, endothelial dysfunction and heart remodeling in the metabolic syndrome ZSF1 rat[J]. Cardiovasc Diabetol, 2020, 19(1):19.
[23] Thirunavukarasu S, Jex N, Chowdhary A, et al. Empagliflozin treatment is associated with improvements in cardiac energetics and function and reductions in myocardial cellular volume in patients with type 2 diabetes[J]. Diabetes, 2021, 70(12):2810-2822.
[24] Kosugi D, Inaba H, Kaido Y, et al. Beneficial effects of sodium glucose cotransporter 2 inhibitors on left ventricular mass in patients with diabetes mellitus[J]. J Diabetes, 2021, 13(11):847-856.
[25] Verma S, Mazer CD, Yan AT, et al. Effect of empagliflozin on left ventricular mass in patients with type 2 diabetes mellitus and coronary artery disease: the EMPA-HEART CardioLink-6 Randomized Clinical Trial[J]. Circulation, 2019, 140(21):1693-1702.
[26] Hao PP, Yang JM, Zhang MX, et al. Angiotensin-(1-7) treatment mitigates right ventricular fibrosis as a distinctive feature of diabetic cardiomyopathy[J]. Am J Physiol Heart Circ Physiol, 2015, 308(9):H1007-H1019.
[27] Widya RL, van der Meer RW, Smit JW, et al. Right ventricular involvement in diabetic cardiomyopathy[J]. Diabetes Care, 2013, 36(2):457-462.
[28] Sarak B, Verma S, David Mazer C, et al. Impact of empagliflozin on right ventricular parameters and function among patients with type 2 diabetes[J]. Cardiovasc Diabetol, 2021, 20(1):200.
[29] Shao Q, Meng L, Lee S, et al. Empagliflozin, a sodium glucose co-transporter-2 inhibitor, alleviates atrial remodeling and improves mitochondrial function in high-fat diet/streptozotocin-induced diabetic rats[J]. Cardiovasc Diabetol, 2019, 18(1):165.
[30] Bode D, Semmler L, Wakula P, et al. Dual SGLT-1 and SGLT-2 inhibition improves left atrial dysfunction in HFpEF[J].Cardiovasc Diabetol, 2021, 20(1):7.(收稿:2022-07-25 修回:2023-01-16)