索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]高晨珊,张亚莉,侯磊.可注射水凝胶治疗心肌梗死[J].国际心血管病杂志,2023,01:9-12.
点击复制

可注射水凝胶治疗心肌梗死(PDF)

《国际心血管病杂志》[ISSN:1006-6977/CN:61-1281/TN]

期数:
2023年01期
页码:
9-12
栏目:
综述
出版日期:
2023-01-20

文章信息/Info

Title:
-
作者:
高晨珊张亚莉侯磊
530021 南宁,广西医科大学再生医学与医用生物资源 开发应用省部共建协同创新中心,再生医学研究中心(高晨珊, 侯磊);200050 上海交通大学医学院附属同仁医院心血管病研究 室(张亚莉)
Author(s):
-
关键词:
可注射水凝胶心肌梗死心力衰竭
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-6583.2023.01.003
文献标识码:
-
摘要:
可注射水凝胶可用来装载生物因子,经微创技术植入体内,达到控释药物的目 的,促进心脏组织再生,有望发展成为治疗心肌梗死的方案。该文介绍了可注射水凝胶在治 疗心肌梗死方面的作用机制及研究进展。
Abstract:
-

参考文献/References

[1] Virani SS, Alonso A, Aparicio HJ, et al. Heart disease and stroke statistics—2021 update: a report from the American Heart Association[J]. Circulation, 2021, 143(8):e254-e743.
[2] Li Y, Chen X, Jin RH, et al. Injectable hydrogel with MSNs/ microRNA-21-5p delivery enables both immunomodification and enhanced angiogenesis for myocardial infarction therapy in pigs[J]. Sci Adv, 2021, 7(9):eabd6740.
[3] Contessotto P, Pandit A. Therapies to prevent post-infarction remodelling: from repair to regeneration[J]. Biomaterials, 2021, 275:120906.
[4] Zheng Z, Tan Y, Li Y, et al. Biotherapeutic-loaded injectable hydrogels as a synergistic strategy to support myocardial repair after myocardial infarction[J]. J Control Release, 2021, 335:216-236.
[5] Lee LC, Wall ST, Klepach D, et al. Algisyl-LVR? with coronary artery bypass grafting reduces left ventricular wall stress and improves function in the failing human heart[J]. Int J Cardiol, 2013, 168(3):2022-2028.
[6] Frey N, Linke A, Süselbeck T, et al. Intracoronary delivery of injectable bioabsorbable scaffold (IK-5001) to treat left ventricular remodeling after ST-elevation myocardial infarction: a first-in-man study[J]. Circ Cardiovasc Interv, 2014, 7(6):806-812.
[7] Traverse JH, Henry TD, Dib N, et al. First-in-man study of a cardiac extracellular matrix hydrogel in early and late myocardial infarction patients[J]. JACC Basic Transl Sci, 2019, 4(6):659-669.
[8] 丁国民, 沈利水. 藻酸盐水凝胶在心力衰竭中的应用现状 [J]. 国际心血管病杂志, 2018, 45(3):139-142, 145.
[9] Paul A, Hasan A, Kindi HA, et al. Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair[J]. ACS Nano, 2014, 8(8): 8050-8062.
[10] Fan CX, Shi JJ, Zhuang Y, et al. Myocardial-infarctionresponsive smart hydrogels targeting matrix metalloproteinase for On-Demand growth factor delivery[J]. Adv Mater, 2019, 31(40):e1902900.
[11] Rufaihah AJ, Seliktar D. Hydrogels for therapeutic cardiovascular angiogenesis[J]. Adv Drug Deliv Rev, 2016, 96:31-39.
[12] Zhu SJ, Yu CJ, Liu NB, et al. Injectable conductive gelatin methacrylate / oxidized dextran hydrogel encapsulating umbilical cord mesenchymal stem cells for myocardial infarction treatment[J]. Bioact Mater, 2022, 13:119-134.
[13] Wei XJ, Chen S, Xie T, et al. An MMP-degradable and conductive hydrogel to stabilize HIF-1α for recovering cardiac functions[J]. Theranostics, 2022, 12(1):127-142.
[14] Zhu K, Jiang DW, Wang K, et al. Conductive nanocomposite hydrogel and mesenchymal stem cells for the treatment of myocardial infarction and non-invasive monitoring via PET/ CT[J]. J Nanobiotechnology, 2022, 20(1):211.
[15] He XJ, Wang Q, Zhao YN, et al. Effect of intramyocardial grafting collagen scaffold with mesenchymal stromal cells in patients with chronic ischemic heart disease: a randomized clinical trial[J]. JAMA Netw Open, 2020, 3(9):e2016236.
[16] Chen CW, Wang LL, Zaman S, et al. Sustained release of endothelial progenitor cell-derived extracellular vesicles from shear-thinning hydrogels improves angiogenesis and promotes function after myocardial infarction[J]. Cardiovasc Res, 2018, 114(7):1029-1040.
[17] Zhang N, Zhu JY, Ma QC, et al. Exosomes derived from human umbilical cord MSCs rejuvenate aged MSCs and enhance their functions for myocardial repair[J]. Stem Cell Res Ther, 2020, 11(1):273.
[18] Liu BH, Lee BW, Nakanishi K, et al. Cardiac recovery via extended cell-free delivery of extracellular vesicles secreted by cardiomyocytes derived from induced pluripotent stem cells[J]. Nat Biomed Eng, 2018, 2(5):293-303.
[19] Wu P, Chen H, Jin R, et al. Non-viral gene delivery systems for tissue repair and regeneration[J]. J Transl Med, 2018: 29448962.
[20] Chun KW, Lee JB, Kim SH, et al. Controlled release of plasmid DNA from photo-cross-linked pluronic hydrogels[J]. Biomaterials, 2005, 26(16):3319-3326.
[21] Yang H, Qin X, Wang H, et al. An in vivo miRNA delivery system for restoring infarcted myocardium[J]. ACS Nano, 2019, 13(9):9880-9894.
[22] Bheri S, Davis ME. Nanoparticle-hydrogel system for postmyocardial infarction delivery of MicroRNA[J]. ACS Nano, 2019, 13(9):9702-9706.
[23] Wang LL, Chung JJ, Li EC, et al. Injectable and proteasedegradable hydrogel for siRNA sequestration and triggered delivery to the heart[J]. J Control Release, 2018, 285:152-161.
[24] Wang W, Tan BY, Chen JR, et al. An injectable conductive hydrogel encapsulating plasmid DNA-eNOs and ADSCs for treating myocardial infarction[J]. Biomaterials, 2018, 160:69- 81.
[25] Balint R, Cassidy NJ, Cartmell SH. Conductive polymers: towards a smart biomaterial for tissue engineering[J]. Acta Biomater, 2014, 10(6):2341-2353.
[26] Ferrini A, Stevens MM, Sattler S, et al. Toward regeneration of the heart: bioengineering strategies for immunomodulation[J]. Front Cardiovasc Med, 2019, 6:26.
[27] Steele AN, Cai L, Truong VN, et al. A novel proteinengineered hepatocyte growth factor analog released via a shear-thinning injectable hydrogel enhances post-infarction ventricular function[J]. Biotechnol Bioeng, 2017, 114(10): 2379-2389.
[28] Munarin F, Kant RJ, Rupert CE, et al. Engineered human myocardium with local release of angiogenic proteins improves vascularization and cardiac function in injured rat hearts[J]. Biomaterials, 2020, 251:120033.
[29] Balaji S, King A, Crombleholme TM, et al. The role of endothelial progenitor cells in postnatal vasculogenesis: implications for therapeutic neovascularization and wound healing[J]. Adv Wound Care (New Rochelle), 2013, 2(6):283- 295.
[30] Xu MY, Ye ZS, Song XT, et al. Differences in the cargos and functions of exosomes derived from six cardiac cell types: a systematic review[J]. Stem Cell Res Ther, 2019, 10(1):194.
[31] Kim S, Lee SK, Kim H, et al. Exosomes secreted from induced pluripotent stem cell-derived mesenchymal stem cells accelerate skin cell proliferation[J]. Int J Mol Sci, 2018, 19(10):3119.
[32] Santoso MR, Ikeda G, Tada Y, et al. Exosomes from induced pluripotent stem cell-derived cardiomyocytes promote autophagy for myocardial repair[J]. J Am Heart Assoc, 2020, 9(6):e014345.
[33] Mancuso T, Barone A, Salatino A, et al. Unravelling the biology of adult cardiac stem cell-derived exosomes to foster endogenous cardiac regeneration and repair[J]. Int J Mol Sci, 2020, 21(10):3725.

备注/Memo

备注/Memo:
基金项目:上海交通大学“交大之星”计划医工交叉研究基金 (YG2019ZDA19)
通信作者:侯磊,E-mail:dr_houlei@163.com
更新日期/Last Update: 2023-01-20