|本期目录/Table of Contents|

[1]陈春英,刘兴元,杨奕清.散发性先天性心脏病相关SMAD1 基因新突变研究[J].国际心血管病杂志,2022,06:371-375.
 CHEN Chunying,LIU Xingyuan,YANG Yiqing..Role of a new SMAD1 mutation in sporadic congenital heart disease[J].International Journal of Cardiovascular Disease,2022,06:371-375.
点击复制

散发性先天性心脏病相关SMAD1 基因新突变研究(PDF)

《国际心血管病杂志》[ISSN:1006-6977/CN:61-1281/TN]

期数:
2022年06期
页码:
371-375
栏目:
临床研究
出版日期:
2022-12-20

文章信息/Info

Title:
Role of a new SMAD1 mutation in sporadic congenital heart disease
作者:
陈春英刘兴元杨奕清
200065, 同济大学医学院附属同济医院儿科(陈春英,刘兴元);200240, 复旦大学附属上海市第五人民医院心内科、心血管研 究室、中心实验室(杨奕清)
Author(s):
CHEN Chunying1 LIU Xingyuan1 YANG Yiqing2.
1. Department of Pediatrics, Tongji University School of Medicine, Shanghai 200065; 2. Department of Cardiology, Cardiovascular Research Laboratory, and Central Laboratory, Shanghai Fifth People′s Hospital, Fudan University, Shanghai 200240, China
关键词:
先天性心脏病遗传学转录因子SMAD1 基因报告基因分析
Keywords:
Congenital heart disease Genetics Transcription factor SMAD1 Reporter gene analysis
分类号:
-
DOI:
10.3969/j.issn.1673-6583.2022.06.015
文献标识码:
-
摘要:
目的:研究散发性先天性心脏病相关SMAD1 基因新突变。 方法:入选202 例 散发性先天性心脏病患儿和238 名健康者,收集其临床资料和血标本并常规抽提基因组 DNA,测序分析SMAD1 基因以发现致病新突变。克隆SMAD1 基因,构建野生型SMAD1 表达载体SMAD1-pcDNA3.1,通过定点诱变产生突变型SMAD1-pcDNA3.1,转染COS7 细 胞,应用双荧光报告基因分析试剂研究突变的功能特性。 结果:在1 例散发性先天性右 心室双流出道合并室间隔缺损患儿中发现SMAD1 基因新突变,即NM_005900.3:c.381T>A; p.(Cys127*) 突变。该突变不存在于238 名健康者中。报告基因分析表明突变型SMAD1 对 靶基因TBX20 的转录激活作用丧失。 结论: SMAD1 基因功能丧失性突变可能是部分散发 性先天性右心室双流出道合并室间隔缺损的分子病因,这对先天性心脏病的精准医学防治具 有潜在意义。
Abstract:
Objective: To investigate the possible role of a new SMAD1 mutation in sporadic congenital heart disease. Methods: 202 children with sporadic congenital heart disease and 238 healthy subjests were included in this study. Clinical data and blood samples we

参考文献/References

[1] Virani SS, Alonso A, Aparicio HJ, et al. Heart disease and stroke statistics—2021 update: a report from the American Heart Association[J]. Circulation, 2021, 143(8):e254-e743.
[2] Zhang Y, Sun YM, Xu YJ, et al. A new TBX5 loss-offunction mutation contributes to congenital heart defect and atrioventricular block[J]. Int Heart J, 2020, 61(4):761-768.
[3] Wang Z, Qiao XH, Xu YJ, et al. SMAD1 loss-of-function variant responsible for congenital heart disease[J]. Biomed Res Int, 2022, 2022:9916325.
[4] Martin LJ, Benson DW. Focused strategies for defining the genetic architecture of congenital heart defects[J]. Genes (Basel), 2021, 12(6):827.
[5] Diab NS, Barish S, Dong WL, et al. Molecular genetics and complex inheritance of congenital heart disease[J]. Genes (Basel), 2021, 12(7):1020.
[6] Sun RR, Liu M, Lu L, et al. Congenital heart disease: causes, diagnosis, symptoms, and treatments[J]. Cell Biochem Biophys, 2015, 72(3):857-860.
[7] 乔祺, 杨晨曦, 顾佳宁, 等. KLF15基因突变导致心房颤动的 机制[J]. 国际心血管病杂志, 2021, 48(1):53-57.
[8] Callis TE, Cao DS, Wang DZ. Bone morphogenetic protein signaling modulates myocardin transactivation of cardiac genes[J]. Circ Res, 2005, 97(10):992-1000.
[9] Singh R, Horsthuis T, Farin HF, et al. Tbx20 interacts with smads to confine tbx2 expression to the atrioventricular canal[J]. Circ Res, 2009, 105(5):442-452.
[10] Mandel EM, Kaltenbrun E, Callis TE, et al. The BMP pathway acts to directly regulate Tbx20 in the developing heart[J]. Development, 2010, 137(11):1919-1929.
[11] Kirk EP, Sunde M, Costa MW, et al. Mutations in cardiac T-box factor gene TBX20 are associated with diverse cardiac pathologies, including defects of septation and valvulogenesis and cardiomyopathy[J]. Am J Hum Genet, 2007, 81(2):280- 291.
[12] Schott JJ, Benson DW, Basson CT, et al. Congenital heart disease caused by mutations in the transcription factor NKX2-5[J]. Science, 1998, 281(5373):108-111.
[13] Granados-Riveron JT, Ghosh TK, Pope M, et al. Alpha-cardiac myosin heavy chain (MYH6) mutations affecting myofibril formation are associated with congenital heart defects[J]. Hum Mol Genet, 2010, 19(20):4007-4016.
[14] Greenway SC, McLeod R, Hume S, et al. Exome sequencing identifies a novel variant in ACTC1 associated with familial atrial septal defect[J]. Can J Cardiol, 2014, 30(2):181-187.
[15] Ransom JF, King IN, Garg V, et al. A rare human sequence variant reveals myocardin autoinhibition[J]. J Biol Chem, 2008, 283(51):35845-35852.
[16] Attisano L, Lee-Hoeflich ST. The smads[J]. Genome Biol, 2001, 2(8):REVIEWS3010.
[17] Prall OWJ, Menon MK, Solloway MJ, et al. An Nkx2-5/ Bmp2/Smad1 negative feedback loop controls heart progenitor specification and proliferation[J]. Cell, 2007, 128(5):947-959.
[18] Tremblay KD, Dunn NR, Robertson EJ. Mouse embryos lacking Smad1 signals display defects in extra-embryonic tissues and germ cell formation[J]. Development, 2001, 128(18):3609-3621.
[19] Arnold SJ, Maretto S, Islam A, et al. Dose-dependent Smad1, Smad5 and Smad8 signaling in the early mouse embryo[J]. Dev Biol, 2006, 296(1):104-118.
[20] Han C, Hong KH, Kim YH, et al. SMAD1 deficiency in either endothelial or smooth muscle cells can predispose mice to pulmonary hypertension[J]. Hypertension, 2013, 61(5):1044- 1052.

备注/Memo

备注/Memo:
基金项目:上海市自然科学基金(16ZR1432500)
通信作者:刘兴元, E-mail:liuxingyuan402@tongji.edu.cn
更新日期/Last Update: 2022-12-20