索引超出了数组界限。
[1] St?whas AC, Lichtblau M, Bloch KE. Obstructive sleep apnea
syndrome[J]. Praxis (Bern 1994), 2019, 108(2):111-117.
[2] Benjafield AV, Ayas NT, Eastwood PR, et al. Estimation of the
global prevalence and burden of obstructive sleep apnoea: a
literature-based analysis[J]. Lancet Respir Med, 2019, 7(8):
687-698.
[3] Veasey SC, Rosen IM. Obstructive sleep apnea in adults[J]. N
Engl J Med, 2019, 380(15):1442-1449.
[4] Salari N, Khazaie H, Abolfathi M, et al. The effect of
obstructive sleep apnea on the increased risk of cardiovascular
disease: a systematic review and meta-analysis[J]. Neurol Sci,
2022, 43(1):219-231.
[5] Maniaci A, Iannella G, Cocuzza S, et al. Oxidative stress and
inflammation biomarker expression in obstructive sleep apnea
patients[J]. J Clin Med, 2021, 10(2):277.
[6] Wang F, Liu Y, Xu H, et al. Association between upper-airway
surgery and ameliorative risk markers of endothelial function
in obstructive sleep apnea[J]. Sci Rep, 2019, 9(1):20157.
[7] Lino DOC, Freitas IA, Meneses GC, et al. Interleukin-6 and
adhesion molecules VCAM-1 and ICAM-1 as biomarkers of
post-acute myocardial infarction heart failure[J]. Braz J Med
Biol Res, 2019, 52(12):e8658.
[8] Oyarce MP, Iturriaga R. Contribution of oxidative stress and
inflammation to the neurogenic hypertension induced by
intermittent hypoxia[J]. Front Physiol, 2018, 9:893.
[9] Prabhakar NR, Peng YJ, Nanduri J. Hypoxia-inducible factors
and obstructive sleep apnea[J]. J Clin Invest, 2020, 130(10):
5042-5051.
[10] Arnaud C, Bochaton T, Pépin JL, et al. Obstructive sleep
apnoea and cardiovascular consequences: pathophysiological
mechanisms[J]. Arch Cardiovasc Dis, 2020, 113(5):350-
358.
[11] He L, Liao X, Zhu G, et al. MiR-126a-3p targets HIF-1α
and alleviates obstructive sleep apnea syndrome with
hypertension[J]. Hum Cell, 2020, 33(4):1036-1045.
[12] Oscullo G, Sapi?a-Beltrán E, Torres G, et al. The potential role
of obstructive sleep apnoea in refractory hypertension[J]. Curr
Hypertens Rep, 2019, 21(8):57.
[13] Di Fusco SA, Pignalberi C, Santini L, et al. Arrhythmias
and sleep apnea: physiopathologic Link and clinical
implications[J]. J Interv Card Electrophysiol, 2020, 57(3):
387-397.
[14] Wang X, Yue Z, Liu Z, et al. Continuous positive airway
pressure effectively ameliorates arrhythmias in patients with
obstructive sleep apnea-hypopnea via counteracting the
inflammation[J]. Am J Otolaryngol, 2020, 41(6):102655.
[15] Imamura T, Xue J, Poulsen O, et al. Intermittent hypoxia
and hypercapnia induces inhibitor of nuclear factor-κB
kinase subunit β-dependent atherosclerosis in pulmonary
arteries[J]. Am J Physiol Regul Integr Comp Physiol, 2019,
317(6):R763-R769.
[16] Song D, Fang G, Mao SZ, et al. Selective inhibition of
endothelial NF-κB signaling attenuates chronic intermittent
hypoxia-induced atherosclerosis in mice[J]. Atherosclerosis,
2018, 270:68-75.
[17] Zeng X, Guo R, Dong M, et al. Contribution of TLR4
signaling in intermittent hypoxia-mediated atherosclerosis
progression[J]. J Transl Med, 2018, 16(1):106.
[18] Olejarz W, G?uszko A, Cyran A, et al. TLRs and RAGE are
elevated in carotid plaques from patients with moderate-tosevere
obstructive sleep apnea syndrome[J]. Sleep Breath,
2020, 24(4):1573-1580.
[19] Eisele HJ, Markart P, Schulz R. Obstructive sleep apnea,
oxidative stress, and cardiovascular disease: evidence from
human studies[J]. Oxid Med Cell Longev, 2015, 2015:608438.
[20] Arnaud C, Bouyon S, Recoquillon S, et al. Nonmuscle myosin
light chain kinase: a key player in intermittent hypoxiainduced
vascular alterations[J]. J Am Heart Assoc, 2018, 7(3):
e007893.
[21] Avezov K, Aizenbud D, Lavie L. Intermittent hypoxia induced
formation of "Endothelial Cell-Colony Forming Units (ECCFUs)"
is affected by ROS and oxidative stress[J]. Front
Neurol, 2018, 9:447.
[22] Belaidi E, Morand J, Gras E, et al. Targeting the ROSHIF-
1-endothelin axis as a therapeutic approach for the
treatment of obstructive sleep apnea-related cardiovascular
complications[J]. Pharmacol Ther, 2016, 168:1-11.
[23] Prabhakar NR, Semenza GL. Adaptive and maladaptive
cardiorespiratory responses to continuous and intermittent
hypoxia mediated by hypoxia-inducible factors 1 and 2[J].
Physiol Rev, 2012, 92(3):967-1003.
[24] Gabryelska A, ?ukasik ZM, Makowska JS, et al. Obstructive
sleep apnea: from intermittent hypoxia to cardiovascular
complications via blood platelets[J]. Front Neurol, 2018,
9:635.
[25] Chen J, Lin S, Zeng Y. An update on obstructive sleep apnea
for atherosclerosis: mechanism, diagnosis, and treatment[J].
Front Cardiovasc Med, 2021, 8:647071.
[26] Khalyfa A, Zhang C, Khalyfa AA, et al. Effect on intermittent
hypoxia on plasma exosomal micro RNA signature and
endothelial function in healthy adults[J]. Sleep, 2016, 39(12):
2077-2090.
[27] Zhang J, Hu C, Jiao X, et al. Potential role of mRNAs and
lncRNAs in chronic intermittent hypoxia exposure-aggravated
atherosclerosis[J]. Front Genet, 2020, 11:290.
[28] Chen Q, Lin G, Huang J, et al. Inhibition of miR-193a-3p
protects human umbilical vein endothelial cells against
intermittent hypoxia-induced endothelial injury by targeting
FAIM2[J]. Aging (Albany NY), 2020, 12(2):1899-1909.
[29] Lin G, Huang J, Chen Q, et al. MiR-146a-5p mediates
intermittent hypoxia-induced injury in H9c2 cells by targeting
XIAP[J]. Oxid Med Cell Longev, 2019, 2019:6581217.
[30] Sofer T, Li R, Joehanes R, et al. Low oxygen saturation during
sleep reduces CD1D and RAB20 expressions that are reversed
by CPAP therapy[J]. EBioMedicine, 2020, 56:102803.